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REDUCTION THEORY AND K, OF THE GAUSSIAN
INTEGERS

R. E. STAFFELDT

Introduction. This paper represents an attempt to obtain new information
about the abelian group K;(Z[i]) as defined by D. Quillen [10]. The rank, which
is one, has been computed by A. Borel (2], and the fact that the torsion part of
K,(Z{i]) has a direct summand which is Z,, may be derived from G. Segal and B.
Harris [12]. The main result of the present work is that this result is sharp for
odd torsion. That is, the odd torsion subgroup of K3(Z[i]) is Z5.

The K-theory result follows from computations of certain homology groups of
SL(n,Z{i]) and GL(n,Z[i]) for n=2 and 3. What is needed for K-theory is
stated in Chapter I; the complete results are given in Chapter [V. The method is
modeled on that of R. Lee and R. H. Szczarba [9]. Chapter I is a précis of the
reduction theory of quadratic forms, the key to analysing the group homology.
A detailed exposition of the theory may be found in P. Humbert [5] and M.
Koecher [6]. The basic construction is due to Voronoi [15]. Chapter IIL is the
construction applied to the case of positive definite hermitian forms over the
Gaussian integers.

The original version of this paper, with weaker results, was the author’s thesis
written at the University of California at Berkeley under Professor J. B.
Wagoner. This version was completed while the author was supported at the
Institute for Advanced Study by the National Science Foundation. Thanks are
due to Professor Wagoner and others for their continued interest,
encouragement, and demands to know which of the several “answers” to the
original question was really the correct one.

Chapter 1. TIn this chapter & will denote the ring of Gaussian integers and A
will denote the ring Z[1], the integers localized away from 2. St(xn) will denote
the Steinberg module of the vector space Q(i)'. We assume these parts of
Theorems 1V.1.3. and IV.1.4,

H,(SL(2,0); St(2) ® A) = H,(GL(2,0);S5t(2) ® A) = {i@ 2. i : gv Loy

H,(SL(3,0); Si(3) ® A) = H,(GL(3,0);8((3)® 4) =0, p=0.1. Q)
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These data are applied to K-theory as follows. Let BQ (BQ,) denote the
classifying space of the Q-category of projective @-modules (of rank less than or
equal to n) as in Quillen [10], [11]. By definition K,(0) = m,, (BQ). There is also
an exact sequence [11]

= H,(BQ, ;M) H (BQ,; Ay—> H,_,(GL(n,0); St(n) @A)

- Hq—l(BQn~ 13 A)_—)
We are interested in H,(BQ; A). The sequence above implies

Hy(BOs; A) 5 Hy(BQg; A) > - -+ > Hy(BQ; A).

Applying the result of [7] that Hy(GL(n,0);St(n)) =0 (n > 3), one derives an
isomorphism

Hy(BQu; ) > Hy(BQs; A)
and a surjection
H(BQ;;A)—> H,(BQ,; A)—0.
This is the general theory behind

TueoremM L1.1.
H(BQ;A)=A®Z;;
K(Z[i)®@A=ABZ,.
The proof is the concatenation of the following sequence of lemmas.
Lemma 1.1.2.

A, p=0,1
0, otherwise.

H,(BQ,; A)= {

Proof. The Q-category of projective modules of rank less than or equal to
one has two objects, 0 and 8, and morphism sets
Homy, (0,0) = {Id}
Hom,, (0,0) = (a,b},
and

Hom,, (0,0) = 0* =Z,,
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the units in ©. There are also rules of composition ua=4a, ub=05b for
u € Homg, (0,0).

It follows that BQ, may be identified with the unreduced suspension B0 * of
BO* with the additional identification of the “north pole” to the “south pole.”
Hence, BQ, =~ S' Vv ZB0* and the homology is readily calculated.

LemMma 1.1.3.
A p=01
Hp(BQZ;A)= 0 P=2’3
ABZ, p=4

Proof. Apply 1.1.2,, (1), and the Quillen exact sequence.

Lemma L1A4. (8} p. 35) BQ is homotopy equivalent to S' X BQ, S the
circle and BQ the universal cover of BQ.

This lemma permits us to argue modulo the Serre class € of abelian 2-groups.
(-

It i’s_:\:ell known that 7,(BQ)= K,(8)=0 mod &, and by [1], p. 436, that

73(BQ) = K5(6) =0 mod C. Therefore BQ is 3-connected mod C, and by [2]

and [12] (cf. Introduction) A& Z3— Ky (0)® A = H(BQ; ). On the other
hand, further use of the Quillen sequence shows there is a surjection

A®Zy= H(BQy A)— Hy(BCZ M)
The theorem follows.

Chapter 1. Here we describe briefly the algorithm of Voronoi’s reduction
theory, since we will have to describe in detail results of this procedure in
Chapters 11T and IV, For a complete discussion of a generalization of Voronoi’s
original theory see M. Koecher [6]. Other references are P. Humbert [5] and
Voronoi’s original paper [15].

Let H(n) denote the vector space of hermitian forms on C”, identified with the
space of hermitian matrices in the obvious way. Let PH(n) denote the cone of
positive definite hermitian forms (matrices). Note that such a form is determined
by its associated quadratic form. For any form ¢ let M, () denote the minimum
value of ¢ on the complement of {0} in some Jattice L in C". One usually takes
L=0" 0 a ring of integers in a quadratic imaginary number field. Let 7, (P)
denote the set of vectors in L at which this value is attained. 1, (@) is called the
set of minimal vectors of ¢ in L. If there is no possibility of confusion, the L will
be omitted from the notation.

Definition. Consider a form ¢ on C" given by

o(v) =BAv,
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where A is a positive definite, hermitian matrix. Let

X1 xln+lyln

xln_t:yln e Xon
denote an hermitian matrix of unknowns and solve the system of equations
Xi= M, (¢), [€m (o).

If X = 4 is the unique solution then, with respect to L, ¢ is a perfect form, one
determined by its minimal vectors.

If the solution set is infinite, let B be a nonzero solution to the set of
homogeneous equations

IXi=0, 1€ (p)
and put
Y (v) =BBo.

For an appropriate 1 €R the form ¢, = ¢ + # will have a larger set of minimal
vectors than ¢. Since the cardinality of %, (¢) is finite, one can prove

PropositioN IL.1.1.  Let @ be any positive definite hermitian form. Then there
exists a form @' such that

(1) M, (9) = M, (9)

(2) my(¢") D ()

(3) ¢’ is perfect with respect to L.

Denote by P(L) the set of forms on C" perfect with respect to L and having
minimum value one on L — {0}. For each ¢ € P(L) define a convex cone in
PH(n), the closure of PH(n), as follows:

Definition. The domain associated to the perfect form ¢ is the set
D(p) = { S oI i1 € (o) o(1) > 0}.
Note that we could also write
D(9) = { oM :A € my(a), o(A) > 0]
if we define

my (@)= {A=117:1€ ()}
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We will take this second description more often since two vectors in #i, (@)
differing by a unit in 0* determine the same vertex A € m(¢).

Since D(g) is convex it may also be described as an intersection of half spaces
of H(n):D(p)={X:(§,X)> 0} for some family of y’s. (The inner product
(¢, X) = traceyX where ¢ and X are represented as matrices.) Let us say {{;},¢;
defines D(g) if D(p)={X:(y;,X)>0; i€} and if the hyperplane H(y;)
= {X: (¢, X) = 0} intersects D(¢) in a codimension one face.

One can show that

(1) PH(») C Ugerwy D(9) = 4 PH(n)* CPH(n).

(2) D(p) N D(¢") is a proper face of each if ¢ 7 ¢'.

(3) A neighborhood of a point of PH(n) meets only finitely many D(¢)’s.

(4) The action of GL(n,0), X\->'gXg, is cellular and carries D(¢p) to D(¢")
where ¢’ = g7 lp'g "

(5) A fundamental domain for this action is contained in the union of finitely
many D(g)’s.
Last of all, if ¢ is perfect and y is a defining vector of D(g) the form ¢’ whose
domain is across the face of D(p) determined by ¥ may be expressed as
@’ = @ + toy for some 7, > 0. It follows that one may study the automorphism
group of ¢ as it acts on the faces of D(g), on the {1} defining D(g), or on the
forms of domains adjacent to D(¢).

Chapter Ill. Now we determine the forms in two and three variables which
are perfect with respect to L =Z[i]', n= 2, or 3, and their groups of auto-
morphisms. O = Z[/] throughout the rest of the paper.

1. ProposiTioN IIL1.1.  Let @ be given by the matrix

1 (1+1)/2
=latyn )

Then o is perfect with respect to L and a set of representatives for # (@) modulo
O*is

(1= (= (= b (0 Dm0

Proof. First note that o = §({x + Y2+ |x + iyP) for 0 ='(x, ). With Bdv
written in this form it is easy to check that the minimum value of ¢ is 1 on
L — {0} and that all minimal vectors are represented above. Then one checks
that 1, 15, I, and Ig do in fact determine 4.

For later use write A ='MA'M:

1 (1+9)/2\ (1 1)(1/2 o)(1 1)
((1—1')/2 1 )'(1 i\ o 12\t i)
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ProrosiTiON 1lI.1.2. Let G(p) denote the automorphism group of @ in
GL(2,0) and let SG(p) = G(@) N SL(2,0). Then there are central extensions

1>2Z,> G(p)—> S~ 1
12> Z,»8G(p)—>4,~>1

where S, and A, are the symmetric and alternating groups on four letters.

ProrosiTion IIL.1.3. Any form in P(L) can be written oh* for some
h € SL(2,0).

Proposition III.1.2. will be proved by studying the permutation representation
of G(p) on the faces of the domain D(g). To prove 111.1.3. we will need III.1.2.
and the forms whose domains share codimension one faces with D(g).
Therefore we will describe D(gp) and a set of defining vectors.

Change coordinates by the matrix M exhibited above. Then the vertices of
D(gp) will have coordinates A, = M[I'M, 1 < i € 6, and the new coordinates of
defining vectors ¢’ will be related to the old coordinates by the formula
W ="M "M~ Let

Y = P Pt inIZ)
P2~ 41 P

be a defining vector. Computing (y/,A)) > 0 for 1 < i < 6 gives the following set

of inequalities:

(1) 2p1,>0 (2) 2p3 20
() put2ptpn>0 (4 plLi—2php+pn>0
(5) Put2q+pp20 (6) pli—2qu+pp20

Hypothesizing that F(y') = {X € D(¢)|(y/,X) =0} is a codimension one face
of D(p) is the same as saying three of these inequalities are actually equalities,
since such a face must contain at least three vertices.

Which triples of vertices can belong to a codimension one face of D(¢)? For
example, suppose A, and A, were to belong to one face. Then (1) and (2) become
equalities and force =0, a contradiction. Similarly, neither {A,,A,} nor
{As,Aq) are subsets of spanning sets of vertices. It follows that D(p) has eight
faces, each spanned by three vertices, as displayed in Table III.1.1.

Proof of 111.1.2. Consider the action of G(p) on the set of unordered pairs

§={(¥1:¥6) = a, (Y4, ¥5) = b, (Y2,¥7) = ¢, (1, ¥) = d}. Geometrically, G(9) is
acting on the set of unordered pairs of opposite faces of D(¢). Recall that

g € GL(2,0) takes ¢ to g~ 'pg ™' = pg*, §, t0 y,g*, and F, to ‘gF,g = Fig. Let

_(-1+i 1 {1 —1-i
e A A (|

1)
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Tasre IIL.1.1.

Face F; Vertices Normal vector ¥;
PRSI
S
F (A Asds) (2f4i 23‘“)
fooean (43
nooooeen (3
noooan (63
e ()
nooea (30

Then both g, and g, are in G(p) and g, induces the four-cycle (abcd) while g,
induces the transposition (ab) in the permutation group of S. Surjectivity of the
map G(@)—> S, now follows from the well-known fact that an n-cycle and a
transposition generate S,,.

Now we claim that the kernel of this representation consists of the four
diagonal matrices {* I, xil}. To begin to see this, observe that G(g) permutes
the vertices of D(g) preserving the sums A, + A=A+ A =As A which are
proportional to the barycenter Si<icsh of D(®), 2 fixed point for G(¢).
Assuming some matrix g € G(¢) leaves fixed the elements of S, we observe also
that g preserves partitions of the set of vertices in a way consistent with the
geometry of D(gp). One can use these observations to show that such a g fixing
the set {F,,Fs} mnst fix F; and Fy pointwise, and that therefore such a
g€ (=1, =il}. This completes the proof of the first part of the proposition.

For the second, introduce

g3=(—1}|-i 1;(1) and g4=((1) —i)
These two matrices induce the permutations (ac)(bd) and (bed) respectively,
which proves that SG(¢) maps onto A, the subgroup of S, generated by these
two elements. Since det g, = i and deth = + 1 for any scalar matrix in G(o), the
transposition (ab) cannot be in the image of SG(¢). The proof is completed by
the trivial observation that {1, =i} N SL(2,0) = {=x1).
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Proof of 111.1.3. Using g; and g, one sees immediately that there are two
orbits of SG(g) in the set of faces of D(¢), one represented by F),, the other by
F4. By this remark and the last one in Chapter II, if there are perfect forms
inequivalent to ¢, one will be either ¢, = @ + 1,3, or g = @ + 1y where t;, ER
is chosen so that D(gp,) is adjacent to D(g) along the face F,. Taking 1, =1
produces perfect forms ¢, having this property. But if

0 10
hz:(% 1) and h6=(—i 1)’

phf = @, and phf = @,. From this, we draw the conclusion of the proposition.
2. Turning to the case of forms in three variables, we have

ProrosiTion 111.2.1.  Let ¢ be given by the matrix
1 1/2 (1+15/2
A= 1/2 1 (1+48)/2
(1=-9n/2 (A-i/2 1

Then M(p) =1 and ¢ is perfect. A set of representatives for m(p) modulo 0* is

14+ 0 0 1 1
11= 0 |,hL= 1+i,13= O,I4= 1 ,l5= -1
-1 -1 1 — 1+ 0
1 1 [0 0 0
=1 ilb==ilt=|1ltb=| 1 [ =11,
-1 i L0 -1+ i

0 1 [ 1 1 1
Ly = 1 la=1{0 5= 0 she= 0|, 5= 0l
-1 0 L~ 14+ i -1

Proof. Observe that, if ‘v =(x, y,z), then BAv=31(x|*+|y*+|x+y+
(1 + i)z|%. Then it is easy to check that the minimum value of ¢ on & — (0} is
1, and that the fifteen vectors above are essentially all the solutions to @(/) = 1.
Finally, the / for i =3, 5, 6, 8, 10, 11, 12, 14, and 15 give a set of equations
which do determine 4.

As in section one, let us write 4 ='MA'M:

1 0 1 1/2 0 0ir1 o o
A=10 1 1 0 1/2 o0 llo 1 o0
0 0 1-iJ{ 0 0 1.2/l 1 1+
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At this point we suggest that the reader make tables of vertices of D(g) in
both prime and unprime coordinates. Recall a vertex A, = /% and A} = MA'M.
We will prove two more propositions in this section.

ProposITION I1112.2. Lei G(@) denote the automorphism group of @ in
GL(3,0) and let SG(¢p) = G(p) N SL(3,0). Then there are split extensions

1> H->G(p)—>5;—>1
1->SH—>SG(p)—> S;~> 1.

S, is the symmetric group on three letters, SH= H N SL(3,0) and H = (0 *)3 in
such a way that the action of S, on H is the permutation action.

ProPOSITION I11.2.3. Any form in P(L) can be written @h* for some h in
SL(3,0).

To prove these statements we follow roughly the steps of section one. Again
we change coordinates by the matrix M defined above. The vertices of D(¢) will
have coordinates A, = MI/M = MA/M and we will determine defining vectors
¥ for D(q). These are again related to defining vectors ¢ in the old coordinates
by "My M = .

Let

P Pzt iqn  Putigs

Y= pla— gz P Pastiqy |
Pis= s P~ 4n P
Calculating (A) (/,\;) > 0 we obtain a table of inequalities:
Ar (1) 2020 Q) 2R>0 () 23>0

-B: (6) pu—2qntpn=0
(M pPu+t2qp+pn>0
—C: (10) pp—2gn+p; >0
() Pn—2ntpyn (1)  pr+2gn+pu>0
D: (12) pu+2p+pn> —D: (14) pl—24it+pn>0
(13) pu—2pis+py >0 (15) pht2q+p20

B: (4  pLt+2phtpn
(3) Pa— 2P0t Py
C: (8) put2pntpn

VvV VvV VYV
o 0o o0 o O

Y

Assuming that F(y/) = {x € D(¢)|(¥/,X) = 0} is a codimension one face of
D (@) implies that at least eight of the inequalities will be equalities. More can be
said. Since each pj; and each g (i 7 j) is to be determined up to scalar multiple
by the vertices ofl the face, we must have at least one equality from the two
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inequalities involving p,f,. or q; Secondly, it must not be possible to deduce
Pi1 = Py = Py =0 from the equalities, or we find ¢/ = 0. Thirdly, it is easy to see
that hypothesizing equality in group X (X = £ B, * C, = D) implies there are
two equalities in 4 and equalities in — X. (Hence four entries in ¢ are zero.) It is
now possible to deduce: There are ten vertices in any codimension-one face,
corresponding to the following choice of equalities. Choose two from 4 and the
two pairs X and — X consistent with the two from A. Then choose one equality
from each of the four remaining pairs of inequalities. One may then solve the
systems and obtain a set of forty-eight defining vectors

2 w(lxi) +(1x0) 0 + (1) 0
+ (15 ) 0 0 |,|x(1Fi) 2 +(1£i),
+ (15 7) 0 0 0 (15 0
0 0 + (1% i)
0 0 + (1% i)
+(1Fi) =(1F0) 2

(Each + above the diagonal may be chosen independently of the others.)

Proof of 111.2.2. The group of automorphisms of D(¢) described in prime
coordinates is the group G’ = (g € GL(3,C):4'g* = A" and ‘Mg'M~' € GL(,
)} where A’ and M are as at the beginning of the section. This group obviously
contains the group G generated by diagonal matrices with entries in ©* and
permutation matrices. If G’ contains no other elements, Proposition II1.2.2.
follows immediately.

Note that if g& G’ permutes the set {A, 5,A3) = S there exists a
permutation matrix # € G such that Ajgh = )] for i =1, 2 and 3. Therefore gh is
diagonal and g € G. The proof will be concluded by showing that any g € G’
must permute the set S.

So, let g € G’ and suppose Sg # S. Since A + A5 + Aj is proportional to the
“barycenter” (= the sum of all the vertices) of D(¢"), it must be true that
Ng+Ng+Ag=A+A;+A;. In view of the forms of the N/, 4<i<15itis
clear that Sg N § # @. Using known elements of G to change g if necessary, it
may be assumed that \jg = Aj and A} g = A;. Then

Ny F AL A =N A A
=Ng+AgtAsg

=N+ g A
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implies A, g = A§. Further computation shows that

x x 0
gl—y » O
0 0 wu

Where u € 0%, 2|x[2= 2| y|> = 1. Then X g is not a vertex of D(¢"). Therefore g
Mmust act as a permutation of S, and the proof is complete.

Proof of 111.2.3. Note that the group G defined in the proof of II1.2.2. is
transitive on the set of forty-eight defining forms. It follows that we must
examine the form whose domain is across one of the faces of D(p). For
example, across the face determined by

o o o) _[o L+ i 0
y=10 0 -2|=M|1-i 2 —1+i|M

0 -2 0 0 -1-1 0
lies the domain of the form @, = ¢ + Ly given by the matrix
1 172 (1+1§)/2

A=| 12 1 i/2
(1—i)/2 —i/2 1

(U'sing the diagonalization

1o 1fi/2 o 01 1 i
A= 1 1 0[l0 1/2 00 1 0
~i o0 1|0 o 172](1 0 1

it is easy to see that g, is indeed perfect and has in common with ¢ the minimal
vectors /; fori=1, 3, 5, 6, 8, 10, 12, 13, 14, and 15.)

Now let
i 0 —i
g=| 0 1 =i

—i =i =1

€ SL(3,9).

Then pg* = ¢,, and, as in IIL1.3,, this suffices to complete the proof.

Chapter IV. The principal results of this chapter are Theorems 1V.1.3 and
IV.1.4 which give the homology groups H(SL(n, 0); St(n) ® A) and H.(GL(n,
©); St(n) ® A) via Lemma IV.12. The method follows, in general, that of
Lee-Szczarba [9] with addendum by Soulé [14]; however, we here require much
more detail. In section one we recall results from [9] and [14] that we need and
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state the theorems. The tedious part of the proofs follows in sections two and
three.
1. We work with the spaces

X, =PH(n)/R%,
X =PH(n)* /R,
and
X =Xr—X,.

R* denotes the positive real numbers and the action is the obvious family of
dilatations. Give X* the CW-topology defined by the cell structure on PH(n)*.
As in the lemma of [14] we have

LemMMa IV.1.1. For n > | the boundary 83X} of X} has the homotopy type of
the Tits building of Q(i) parabolic subgroups of SL(n, Q(i)) and X,y is contractible.

We also restate Lemma 1.2, of [9]:

LemmMma IV.1.2,
Hq((X,j‘,BX,’,“) X EG; A) = H,_,,(G;St(n) ® A)
G

for G =GL(n,0) or G=SL(n,0). Here EG is the total space of the universal
G-bundle.

From the cellular filtration on (X},0X*) we obtain a fiitration on
(X}, 0XF) X ;EG and a spectral sequence Ey .= Hy((X),0X}) X ;EG;A).
Let (X})” (p > 0) denote the p-skeleton of X} union the boundary d.X,. Let
(X~ '=03X*. As usual

By = Hyuo [0, (57 Y ] X BG3A)

= H,(G; H,((X3 )\, (X3 Y5 A)),
by a spectral sequence argument;

=@ Hq(G;AG ? Hp(of,aa/’;A)),

i€l

where the direct sum is over / €  indexing representative cells o/ for each orbit
of G in the set of p-cells and G, denotes the automorphism group of of in G;

= -?1Hq(Gi;Hp(Of’ daf; A))

by Shapire’s Lemma.
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To interpret the components of the first differential d, let g, be a p-cell and let
gy, . .., 0, be the faces of o representing orbits of pairs (g, face of o,) under
the action of G, the group of g,. Let Gy, denote the group preserving the pair
(65,0, and let G, denote the group of ;. When we have the data to see the signs
are correct it will be seen that the components of dy are the compositions

Hq(Go§pr(UOaaUO))MHq(GOi; H,(05,30))
— H,(Gy;3 H,— (3095 300 — ; ))
= Hq(GOi;Hp—l(ai’aoi)) )
inclusion, H, (G Hy— (05 30;)).
Using the spectral sequences and IV.1.2. we obtain the following theorems.

TueorREM IV.1.3,
H,(SL(2,0); St(2)® A) =

0, n=0,lorn>3andn51,0mod4.
H"(GL(z,G);St(z)@)A) =IANDZ;, n=2
Zs, n>Sandn=1,2mod4.

THEOREM IV.14.
H,(SL(3,0); St(3)®A) = H, (GL(3.0); St(3) ® A)

o, n=0,1,4,0rn>7 =—10mod4.
Aor A®Z,, n=2.

A, n=13.

14,5, n=3

ABZ, n=0.

LZ%, n>9%andn=1,2mod4d.

Theorem IV.13 is actually a separate calculation for each group. In both
cases one arrives at an E2-term whose nontrivial part extends upward.

6/0 0 0 O
510 0 z, 0
40 0 0 0
3lo o o z
20 0 0o o
1o 0 z 0
olo o 0o A
0 1 2 3
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Obviously the differentials vanish from this point on and there are no extension
problems. In section two we outline how to get this E*-term.
In Theorem IV.1.4 the isomorphism

H,(SL(3,0); St(3) ® A)—=> H,(GL(3,0); St(3) ® A)
is immediate from the spectral sequence of the extension
1->8L(3,0)>GL(3,0)>Z,~>1

since Z, acts trivially on SL(3,0) and on the coefficient module, and since the
higher homology of Z, with A-module coefficients vanishes. Now we show how
to finish the calculation, given the E%term of the spectral sequence. In section
three we will explain how to get this far.

S —~ N Wk O N10oO D

oclo oo oo o oo O
——o o0 0OC OO0 OO ©
Do oo oo oo oo ©
wo No co No oo N
s> oco No oo No o
wl> oo No oo No o
oo co oo o0 oo ©
o oo oo oo o0 ©
o co No co No o

The ambiguity in the theorem is due to my inability to calculate the
differential d,: E2 — E} . Is it zero? However applying work of Brown [16] on
the high-dimensional homology of groups of finite virtual dimension, we can
resolve the extension problems.

His theorem states that when i > 6,

H,(SL(3,0); St(3) ® A) = H37/(N,; A) ® H~/(Ny; A)

where H denotes Farrell-Tate cohomology and N, denotes the normalizer of the
group generated by A,

1 0 0 0 0 1
h=10 0 -1 and  A,={1 0 0
01 -1 0 1 0

are representatives of the two conjugacy classes of elements of order three. (We
remark on this below in section three.)

PropoSITION IV.1.5. N, and N, each map onto a group N with a 2-group for
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the kernels. N is a split extension

1-Z8Z,->N->2Z,>1,

with Z, acting nontrivially on both generators of Z® Z5.

Then one computes
0, = 1,2 4),
HI(N,: A) = 9=12 (mod %)
Z,, ¢>0,g=-1,0mod4

and sees that the Farrell-Tate groups are periodic of period 4. See [16]. This
proves all extension problems have the trivial solution except for the one along
the line p + ¢ = 8. For this case we calculate everything with Z, coefficients. The
universal coefficients theorem applied to (X3¥,3X%) X ;EG implies

Tor( Hg(SL(3,0); St(3) ® A), Zy) = H,(SL(3,0); St(3) ® Z,)
= H (N3 Z;)® H 7 (Ny; Zy)

=22

Proof of IV.1.5. (The author is grateful to K. Brown for this argument.) It
will be useful to replace £, by its conjugate

I 0 1

0 0 -1

0 1 -1
which we still call 4,. Now

-1 0 0
k= 0 0 -1
0 -1 0

is an element of SL(3,0) conjugating 4 to A~', so it remains to find the

centralizers.

Note that the integers 8’ in Q(*}/1 )= Q@)({), { a primitive cube root of
unity, are O + ¢, Via k,, 0’ embeds into Endg0® and P = ©°/(0'-torsion) is then
a projective rank 1 0’-module isomorphic to 6% viewed also as an @'-module.
Therefore Endg M = 0’ and Aut, P = 0'* may be interpreted as the subgroup of
all elements of AutP commuting with the automorphism induced by A
O'* =Z,,® Z, the generator of infinite order being 2 — Y3 . It remains to lift this
element back to an automorphism of ©° commuting with A. For h; the

appropriate element is clearly

1 0 0

0 2i 2—i
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For 4, one can only lift the square of the generator 2 —y3 back; the appropriate
element is

1 —-2—-4i —-24+4i

0 87 7 - 4i

[t should be clear that k conjugates g to g~ ' and that the kernel of
Autg.0° = Autg. P is two-primary.

2. Recall that the matrix A; = /. In this section and the next c(i, j, ..., k)
will denote the cell in X} which is the projection of the span
{rA + N o+ 1A s > 0, not all = 0} in PH(n)*. (4, j, .. ., k) denotes the
form with matrix A, +A;+ -+ 4+ )., which we call the barycenter of
c(i, j,.. ., k). Now we outline how to obtain the E’-term of the spectral
sequence for the GL(2,0) case, working from left to right.

A, ¢=0
E3‘,q =12, g=3mod 4;
0, otherwise.

First it is necessary to recall from ITI.1.3 and I11.1.3 that one cell c4 is required
here and that its group G, is an extension of S,. Second we must see that G acts
on ¢, preserving the orientation. Starring ¢, at the barycenter decomposes ¢, into
simplices and it is easy to check this assertion. This gives Ej 4 as claimed.

£l =[23, g =1mod 4;
2,49 .
0, otherwise.

In the Proof of II.1.3 we remarked that ¢(2,3,6) and ¢(1,3,6) represent the
two orbits of SG(¢) in the set of faces of G{p). However

c(1,3,6)(6 ‘13) = ¢(2,3,6)

so there is only one GL(2,0) orbit in the set of two-cells of X*, and we take
€(2,3,6) as the representative. We leave it to the reader to verify that the
stability group G, of ¢(2,3,6) fits into an exact sequence 1 >Z,- G,— §;— 1
and contains an orientation-reversing element.
E| 1, =0and Ey ! . =0 are no trouble at all, and clearly all differentials vanish.
When setting up the E'-term for the SL(2,0) case, we find

A, g=0;

Egl,q‘= Z;, g=1,3mod4,;
0, otherwise,

Ezl,q={Z§’ quII:lOd4;
0, otherwise,

El =E; =0

1,q=
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That is, both ¢(2,3,6) and c(1,3,6) contribute to the E ! term, and we will have
to calculate a differential. As outlined in the beginning of the chapter, one may
write

A cs] = ([c(1,3,6)] —[e@3,6) )1+ hy + hy+ h3)

where 1, hy, h,, and h; are coset representatives in G, for the cosets of the groups
stabilizing the pairs (c3,¢(2,3,6)) and (¢3,¢(2,3,6)). Using the formula for
transfer in [4] on page 225 and the periodicity of the homology groups one
shows d, : E4 P E; 4 induces the E2 term as claimed.

3, Before we give the F Lierm of the spectral sequence which computes
H (SL(3,0); SY(3) ® A) we introduce more notation and make a few remarks.
For a face ¢ = ¢(i, j, . . ., k), c¢[n] denotes the face obtained by omitting the
vertex A,. We will inductively find representatives of the orbits of SL(3,0) in the
codimension m cells by looking at the faces of the representative codimension
m — 1 cells and eliminating redundant cells according to the empirical principle
that if det# = det& for the barycenters of ¢ and ¢, then ¢ and ¢’ should be in the
same SL(3,0) orbit. Existence or non-existence of symmetries of a cell may be
inferred sometimes from the values of the determinants of barycenters of sets of
subfaces of the given cell. A change of coordinates usually permits one to find a
desired symmetry by inspection. One expects all this to be difficult in low
codimensions where one must move around lots of vertices simultaneously.
Therefore, we supply most of the data required to determine the spectral
sequence in the right-most columns, leaving some verifications in the left-most
columns to the diligent reader.

A, =0
Eq,=1Z;, g=3mod4;
0, otherwise.
By 111.2.3 there is one orbit among the top-dimensional cells and by I11.2.2 we

have the structure of the stability group Gg. Since SL(3,C) is connected Gy
preserves the orientation of the cell. Therefore, EBl 7 is as claimed.

E}, =0

We remarked in 111.2.3 that G, is transitive on codimension one faces of ¢g, 80
there is one orbit represented by ¢; = ¢(1,2,4,5,6,7,8,10, 12, 14). Starring c; at
its barycenter decomposes ¢, into eight simplices, and it is easily checked that
orientation is reversed by

1 0 —i
hy = [ 0 I i

—i - -1

We also need to note that no element of order three stabilizes ¢,. (Elementary
Galois theory shows that there are no elements of SL(3,0) of prime order p > 5.)
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If there were such an element, it would have a fixed point set of dimension at
least three in X¥, since it would have at least four orbits in the vertex set of ¢;.
But the fixed point sets of

1 0 0 0 0 1
=10 0 -1 and h=11 0 0
0 1 -1 0O 1 0

are each two-dimensional and these two elements represent the distinct
conjugacy classes of order three elements. This fact may be proved directly
using a little elementary linear algebra or from the fact that elements of order
three appearing in the stabilizer of a face of higher codimension are all
conjugate to one of these.

A, g=0;
Eel,q= Z:, g=1mod2;
0, otherwise.

This is clear, once we see that there are three orbits in the set of codimension
two cells represented by

¢l = ¢(2,5,6,8, 10,12, 14) with group Ge = {1},
¢ = ¢(2,4,6,8, 10, 12,14) with group G¢ = Z3, and

2 =c¢(1,2,4,5,6,7,8,10, 12) with group G =12,.

Returning to the inequalities of chapter I1I, section 2, we can count the
codimension two faces of D(¢): There are 3 - 2° which are simplices and 3 - 2
which are not, like ¢;. One can also verify that only the identity element of
SG(g) = G, fixes ¢}, ¢Z, or ¢, and that the order of Gy is 3 2%, Therefore the
translates of the chosen cells fill out the set of codimension two faces of ¢g. Then
we observe that detél =32+ 36=deté; so that these cells are in different
GL(3,0) orbits. Therefore they form a complete, irredundant set of rep-
resentatives.

To argue G} = {1}, start by computing determinants of the barycenters of the
seven codimension one faces of ci. cl[14] is the unique face such that
det2)[14] = 16, so it follows that Gg stabilizes cl[14] = c3. However, we
determine the group of this face below, and it is easily verified that only the
trivial element fixes the vertex A4.

G2 = Z,: Change corrdinates by
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Thus the vertices of cZa, are given by the following table:

TaBLE IV.3.1
(1 0 0 (1 —i 0]
0 0 0|l=A0 i 1 0 =AM,
(0 0 0 L0 0]
(0 0 0] (0 0 0)
0 1 0|=Apa 0 1 —i|=Apa,
L0 0 0] 0 i 1 ]
(0 0 0] (1 0 i)
0 0 0|=2A, 0 0 0|=Aa;
0 0 1) =i 0 1
(1 1 1)
11 1] =Aua
111

«

Clearly h, = a; 'g,a, permutes the vertices and stabilizes the face. Calculating
det 82[2] = det &2[10] = det ¢2[6] = 22, deté?[8] = deté[12] = deté}d] =20, and
detéZ[14] = 18 shows that any element of G2 permutes {A,,A;5,A¢) and is
therefore conjugate by a, to an automorphism of the form given by the identity
matrix. On the other hand it is easily checked from the table that only the
powers of h, are conjugale to matrices stabilizing c?.

G¢ = Z,: The argument is practically the same. Change coordinates by

1 0 0
a;=10 1 0
0 —i 1

From his own table the reader will easily recognize the symmetry A, = a5 'g3a,
in the transformed vertices. On the other hand, observing that the only
codimension one faces of ¢} which are not simplices are those faces omitting a
vertex Ag, A,y Oor A, shows, as above, that a;'Gda; is a subgroup of the
automorphisms of the identity matrix. Again only powers of /, can belong to
this subgroup.

A% g=0;
gl =]Z g=lmod4;
5.9
Z3, ¢=3modd4
0, otherwise.

There are the following representative codimension three faces.

651 = 6(1,2,4,5,6,7,8,12)
2 =¢(2,4,6,8,10,12)

2 =¢(2,6,8,10,12,14)
¢t =c(1,4,7,8,10,12)

e} = ¢(2,5,6,8,10,12)
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Their groups satisfy
Gi D Z,, is orientation-reversing, and has no 3-torsion;
Gi={(1}; G3=12,; Gé=12, and

1-(Z,)*> Gi— S;—>1 s orientation-preserving,

GJ: G! fails to contain three torsion for the same reason as G,. One may

check that G{ contains
0 -1 0
0 0 -1

and that this element reverses the orientation of c;.

G2: Calculation of the determinants of the barycenters of the faces of ¢2
shows that G2 permutes the set of vertices {AysAg,Ag,A ). Thus GF is a
subgroup of the group of ¢(2,6,8,12) which is isomorphic to GZ. This group is
described below and it is routine to see that no nontrivial element stabilizes cl.

G2 and G#: Refer to the arguments and tables for G¢ and Ge.

G2: The vertices of cia, obviously admit a symmetry induced by
hs = a5 'hya,. (Refer to one’s own table of vertices of cgas.) h; and g; generate a
subgroup of G isomorphic to S;. One checks that among pairs of opposite faces
of ¢ having three vertices apiece the following set S satisfies (deté(i, j,k),
deté(l,m,n) = (0,1). S ={(c(2,5,6),¢(8,10,12)), (c(6,10,12),¢(2,5,8)), (e(5,8,
12),¢(2,6,8)), (¢(2,8,10),¢(5,6,12))}. Therefore G? is a group of permutations of
S. But G acts transitively on § because it also contains the element

0 1 -1
hy=al1 0 —1a5"
0 0 -1

It is now possible to prove that GJ is generated by these orientation preserving
elements and fits into the given exact sequence.

A, g=0;
E4‘,q= Z,, ¢=3mod4;
0, otherwise.

Orbit representatives are:
cs =¢(1,2,4,5,6,7,8) ct=¢(5,6,8,10,12)
c; = ¢(4,6,7,10,12) ci=1¢(2,6,8,12,14)
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We obtain the following information about the stability groups.

152, G}~ Sy~ orientation-preserving.

G2 D(Zy X Zy) X Zy, orientation-reversing.
GlDZ,, orientation-reversing.
GioZ,  orientation-reversing.

G): ¢} is the cone on a copy of the domain constructed in the two-by-two

case, Therefore, we have G as described.
G2, G}, and G contain no three torsion because no element of order three in

SL(3,0) fixes two lines. Before giving generators, we remark that it is handy for
the inductive step to know G2 is transitive on a largest possible set of faces, so
we give more than our orientation-reversing element.

Z2C G} is generated by

“1 0 -1 1 -1 0
hy=ay| 0 -1 0 la7' and  hy=a3 O 1 0|a;'.
0 0 1 0

-1 0 0
Z,is generated by k = a;| 0 o —1 J|a.
o -1 0

1 — 1 i
Z,C G} is generated by hy = azlo -1 O}a2
0 0 -1

1 —i 0
Z,C G is generated by by’ = a{ —i 0o —i }a{'.
-1 0 0

El, = {Z%, g=1 n'10d4;
0, otherwise.
There are three representative cells in codimension five:
el =¢(2,5,6,8), 3= ¢(5,6,8,10), and ¢ =c(2,6,8,14)
The groups all reverse orientation, G4 is an extension of 85,
1-2,> G~ 83—~ 1,

GZ=S,, and G} = S;.
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It is easy to prove the assertions about the groups if one takes

1 -1 1 -1 0 -1 i i i
b1= 0 0 BB b2=‘ 0 1 01, b3= 1 I-i 0
0 -1 1 0 0 -1 -1 0 i

and calculates the vertices of clash,, c3ash,, and c3a,bs. However, the generator
of Z,C G3 may be a little hard to find. lts congugate by a,bs is

—-14+i =1-1 1
-1—i 1 -1+
1 —14i —-1-i

El’l,q= {Zg, Eln.md4;
0, otherwise.

Representatives for the two classes of codimension six faces not in the
boundary are c) = ¢(6,8,10) and c2=c(6,8,14). It is easy to make this inductive
step and to show G4 D S, G; = S, and both groups reverse orientations.

E},=0and Eg, = 0 are clear. Now we present the necessary facts about the
differential d,. d,: Eg ,— E7 , and d\: E1 ,— Eg , are clearly trivial. Keeping
track of the orientations, we find the matrices for d: Eq = Es , are

-2 =3 3
4 1 -3 .
f g=0;

o 3 -1 |0 Fa7h
1 0 1

1 0 . = .
(0 1), if g=1mod4;

1 0

o 11, g=3mod4;

0 1

or zero.
d,: Es P E} g 18 ZETO because the cell contributing to Ej, ; is not a face of any
cell contributing to Es .
d,:E},— E3 , can have a component only in that part of E; , coming from
¢} (consider conjugacy classes). Therefore, it is zero.
. (0 1 O
dy i By 41 Ej 4 has matrix (O 0 1).

This is a transfer calculation.
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Now we comment on a procedure for eliminating redundant faces from the
list of codimension m faces of a minimal set of representative codimension
m — 1 faces. As mentioned earlier we are trying to prove that if deté = det?,
and if ¢ and ¢’ have the same number of vertices, then ¢ and ¢’ represent the
same orbit. One may try to find a sequence g, .. ., g, of elements of SL(3,0)
such thatcg, N ¢’ < g g N ¢’ < -+ v <cgygy -+ g = ¢ writing “is a face of”
as <. For example, suppose one knows a face ¢| of ¢’ has a large stability group.
Then one could try a calculation of determinants of barycenters of lower faces
of ¢ and ¢} to see which subface of ¢ one should try to move onto ¢} . One could
hope to finish moving ¢ onto ¢’ in one more step by finding g, inside the stability
group of ¢}.

For example, we obtain most of the following data following this procedure.

Codimension two to codimension three. Faces of cg = ¢(1,2,4,5,6,7,8,10,12):

‘351 = 52[10] = c§[8]g3 = 02[12:’(&)2;
cs=1¢(1,4,7,8,10,12); e =¢(2,5,6,8,10,12)
¢(1,5,6,8,10,12) = ¢(2,4,6,8, 10, 12)g; = ¢(2,5,7,8, 10, 12)(g3)2

(2,4,7,8,10,12) = ¢(1,5,7,8, 10, 12)g; = ¢(1,4,6,8,10,12)( g5)*

But
1 0 0)
¢(1,5,6,8,10,12)a;[ 1 —i 0 |a; '=c3;
1 0 i)

]

—1
0(2,4,7,8,10,12)513{_,- 0 0 |ag'=ci
0

—-i =1

Faces of ¢ = ¢(2,4,6,8,10, 12, 14):

But
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Faces of ¢¢ = ¢(2,5,6,8,10,12, 14):

cg[14] = c3

Pl i 0 0 —i
i[12]as10 1 —ilay'=c} c[10]a) O 1 —ifay'=c]
0 0 —i 0

1 0 i —i 0 1
ci[8las|1 —i ilag'=c3 cg[6]a;] O 0 1 ay' = c
0 0 i

i 0 0 1 0 0
Cé[S]a:, 0 ¢ 1 azl—cg cé[Z]as 1 0 i az—l___cg
0 —i O 0 i 0
Codimension three to codimension four. Faces of cg = ¢(2,5,6,8,10, 12):
ci=c3[2]=c3[5]¢g y=c3[6 ](33)
c3[12] = ¢3[10] g = ¢3[8](&s)’

0 -1 =1
c3[12]as) — 1 0 —1lag'=¢c}

0 0o -1

But

Faces of c? = ¢(1,4,7,8,10,12):

c5[12]—c5[10] "Cs[ ](ga)

1 1—i 14
but ci[12]as|1 0O i lay'=q.
1 —i 0

cd[1]=ci[4]g ,=c[7](g),  but c§[1]a3[0 __11 ;]a{‘=c4.
0 0 i

Faces of ¢} = ¢(2,4,6,8,10,12):
= 3[2] = c3[6] g = c3[10](&2)’

3[5] = c3[4] = ci[12] & = 3[8](g2)"
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Faces of ¢z = ¢(2,6,8,10,12, 14):

c3[10] = ci,  ci[14] = 3[5]

5 -1 0 ~-1-1 0 i -1
ci[2]a;| O 0 i a;'=c}, c3[6]ay] 0O O i a;'=c}
0 i 1 -1 0 1-i
-1 i 0 i 0 0
c§[8]a3[ 0o —-i O ]a{'=c§', c§[12:|a3[0 i 0 }a{'=c3
0 0 i 0o —-i -1

Faces of ¢i = ¢(1,2,4,5,6,7,8,12):

ch=ci[12] = ¢5[8]hs.

The other faces are simplices:
| c3[10] =c(2,5,6,8,12)=c(1,5,7,8,12)h5
c2[10] =¢(1,4,7,8,12) = c(2,4,6,8,12)hs
¢(1,4,6,8,12) = ¢(2,4,7,8, 12)hs
¢(1,5,6,8,12) = ¢(2,5,7,8, 12) 5
i1 0]

i 1 =il

N

0 0 i
¢(1,5,6,8,12)a| —i 0 i ay'=c}
0 1 i)

Codimension four to codimension five:

Since we are now dealing with cells having many automorp
face which is a simplex

faces this is much easier. We can say that we need one

from c,, the face ci, by what we have done in the two-by-two case. The face

which is not a simplex lies in 8X3. We have given enough elements of G} to see
onsider one of these

that it is transitive on faces containing A,,. So from ciwec
4"we need ci[14] and ci = c4[2]. But we

¢¥[10), and ¢2 = cj[12]. Similarly, from c4
have to tabulate more cases for faces of c3 since we only know cJ[8]h; = c3l4].

hisms and few
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We place the redundant faces as follows:

¢k
3

Cq

¢

10.

(1 -1 0 0 —i 0
[10]a|1 0 -1]a'=cl ci[10]af=1 0 0[a'=4]
L1 0 0 0 0 i
(1 0 0 —i 0 0
[12]aj0 —i 0O ay'=c ci[8)ay| i 0 —i |a7'=¢c3
|0 o i 1 -1 0
(—1+7 i 0 1
[10]a,| 1 0 1la;'=¢ c[6]a|1 0 0a;'=ci[10]
| —i 0 1 0
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