Tools for Getting Graphics Into LATEX Part 1

Dan Drake

Korea Advanced Institute of Science and Technology

13 August 2008 / Sage Days 9

- Introduction
- Strategy i
- Strategy 1
- Wrap up

- Introduction
- Strategy i
- Strategy 1
- Wrap up

- Introduction
- Strategy i
- Strategy 1
- 4 Wrap up

- Introduction
- Strategy i
- Strategy 1
- Wrap up

- Introduction
- Strategy i
- Strategy 1
- Wrap up

Before we get started...

Tomorrow I'll talk more about specific pieces of software. Try to think of questions like:

- What's a good way to make graphics like X / for Y?
- Is graphics program X good for use with LATEX?

I will take questions at the end and answer them tomorrow. (Or maybe today.)

- It doesn't.
- TEX uses the \special macro to put magic bits in the output file.
- Vaguely similar to putting images on web pages with an img tag.

- It doesn't.
- TEX uses the \special macro to put magic bits in the output file.
- Vaguely similar to putting images on web pages with an img tag.

- It doesn't.
- TEX uses the \special macro to put magic bits in the output file.
- Vaguely similar to putting images on web pages with an img tag.

- It doesn't.
- TEX uses the \special macro to put magic bits in the output file.
- Vaguely similar to putting images on web pages with an img tag.

Admission of biases

(and level of knowledge)

Admission of biases

(and level of knowledge)

Admission of biases

(and level of knowledge)

Two basic strategies

Two basic strategies for getting graphics into LATEX:

Strategy 1 use LaTEX itself
Strategy i use something else

- Introduction
- Strategy i
- Strategy 1
- Wrap up

Strategy *i*: use something else to create the graphics

- Using latex to make a DVI file: only EPS files
- Using pdflatex to make PDFs: PDF files, as well as JPG and PNG.

Use "Postscript family" formats whenever possible

- Vector graphics are much better for mathematical/scientific graphics
- The TEX ecosystem is well-adapted to the Postscript family
- Conversion between EPS, PS, PDF is usually quite easy.

Use "Postscript family" formats whenever possible

- Vector graphics are much better for mathematical/scientific graphics
- The T_EX ecosystem is well-adapted to the Postscript family
- Conversion between EPS, PS, PDF is usually quite easy.

Use "Postscript family" formats whenever possible

- Vector graphics are much better for mathematical/scientific graphics
- The TEX ecosystem is well-adapted to the Postscript family
- Conversion between EPS, PS, PDF is usually quite easy.

Aside: leave off extension when includegraphics'ing

A tip:

- When using \includegraphics, don't add the file extension; latex and pdflatex automatically look for EPS and PDF files, resp.
- Do \includegraphics{foo}, keep foo.eps and foo.pdf around. (Use epstopdf if necessary.)

Aside: leave off extension when includegraphics'ing

A tip:

- When using \includegraphics, don't add the file extension; latex and pdflatex automatically look for EPS and PDF files, resp.
- Do \includegraphics{foo}, keep foo.eps and foo.pdf around. (Use epstopdf if necessary.)

From Wikipedia's article on "Vector graphics": "One of the first uses of vector graphic displays was the US SAGE air defense system."

SAGE, the Semi-Automatic Ground Environment, was an automated control system for tracking and intercepting enemy bomber aircraft used by NORAD from the late 1950s into the 1980s. [...]

From Wikipedia's article on "Vector graphics": "One of the first uses of vector graphic displays was the US SAGE air defense system."

SAGE, the Semi-Automatic Ground Environment, was an automated control system for tracking and intercepting enemy bomber aircraft used by NORAD from the late 1950s into the 1980s. [...]

From Wikipedia's article on "Vector graphics": "One of the first uses of vector graphic displays was the US SAGE air defense system."

SAGE, the Semi-Automatic Ground Environment, was an automated control system for tracking and intercepting enemy bomber aircraft used by NORAD from the late 1950s into the 1980s. [...]

From Wikipedia's article on "Vector graphics": "One of the first uses of vector graphic displays was the US SAGE air defense system."

SAGE, the Semi-Automatic Ground Environment, was an automated control system for tracking and intercepting enemy bomber aircraft used by NORAD from the late 1950s into the 1980s. [...]

From Wikipedia's article on "Vector graphics": "One of the first uses of vector graphic displays was the US SAGE air defense system."

SAGE, the Semi-Automatic Ground Environment, was an automated control system for tracking and intercepting enemy bomber aircraft used by NORAD from the late 1950s into the 1980s. [...]

From Wikipedia's article on "Vector graphics": "One of the first uses of vector graphic displays was the US SAGE air defense system."

SAGE, the Semi-Automatic Ground Environment, was an automated control system for tracking and intercepting enemy bomber aircraft used by NORAD from the late 1950s into the 1980s. [...]

From Wikipedia's article on "Vector graphics": "One of the first uses of vector graphic displays was the US SAGE air defense system."

SAGE, the Semi-Automatic Ground Environment, was an automated control system for tracking and intercepting enemy bomber aircraft used by NORAD from the late 1950s into the 1980s. [...]

- Introduction
- Strategy i
- Strategy 1
- 4 Wrap up

Strategy 1: use LATEX to create the graphics

This uses packages that use TFX or LATFX to insert graphics directly.

Strategy 1: use LATEX to create the graphics

This uses packages that use TEX or LATEX to insert graphics directly.

Strategy 1: use LATEX to create the graphics

This uses packages that use TEX or LATEX to insert graphics directly.

Unfortunately, awesomeness is strongly correlated with being difficult to use.

Big advantage: TEX does the text!

Using TEX means text in the graphics matches the rest of the article.

- can do math properly
- matching typeface gives visual and logical consistency

Two slogans from book titles:

- don't click the black T
- write like you give a damn

Big advantage: TEX does the text!

Using TEX means text in the graphics matches the rest of the article.

- can do math properly
- matching typeface gives visual and logical consistency

Two slogans from book titles:

- don't click the black T
- write like you give a damn

Big advantage: TEX does the text!

Using TEX means text in the graphics matches the rest of the article.

- can do math properly
- matching typeface gives visual and logical consistency

Two slogans from book titles:

- don't click the black T
- write like you give a damn

Big advantage: TEX does the text!

Using TEX means text in the graphics matches the rest of the article.

- can do math properly
- matching typeface gives visual and logical consistency

Two slogans from book titles:

- don't click the black T
- write like you give a damn

Big advantage: TEX does the text!

Using T_FX means text in the graphics matches the rest of the article.

- can do math properly
- matching typeface gives visual and logical consistency

Two slogans from book titles:

- don't click the black T
- write like you give a damn

Big advantage: TEX does the text!

Using T_FX means text in the graphics matches the rest of the article.

- can do math properly
- matching typeface gives visual and logical consistency

Two slogans from book titles:

- don't click the black T
- write like you give a damn

We need strategy ...

- Overlay a picture environment over the graphics (xfig, overpic, psfrag)
- Render text as paths (PiScript, Inkscape, et al.)

We need strategy ... 1+i! Use something external to create the graphics, and use T_EX to create and place the text.

- Overlay a picture environment over the graphics (xfig, overpic, psfrag)
- Render text as paths (PiScript, Inkscape, et al.)

We need strategy ... 1 + i!

Use something external to create the graphics, and use $T_{\hbox{\scriptsize E}}X$ to create and place the text.

Ways to do this:

- Overlay a picture environment over the graphics (xfig, overpic, psfrag)
- Render text as paths (PiScript, Inkscape, et al.)

We need strategy ... 1 + i!

Use something external to create the graphics, and use $T_{\!\!\!E}\!X$ to create and place the text.

Ways to do this:

- Overlay a picture environment over the graphics (xfig, overpic, psfrag)
- Render text as paths (PiScript, Inkscape, et al.)

We need strategy ... 1 + i!

Use something external to create the graphics, and use $T_{\!\!\!E}\!X$ to create and place the text.

Ways to do this:

- Overlay a picture environment over the graphics (xfig, overpic, psfrag)
- Render text as paths (PiScript, Inkscape, et al.)

Interlude

A disclaimer/cautionary tale/admission of hypocrisy...

Outline

- Introduction
- Strategy i
- Strategy 1
- Wrap up

Colophon

A note about the graphics

What's a colophon? Quoth Wikipedia:

A brief description usually located at the end of a book, describing production notes relevant to the edition. In most cases it is a description of the text typography, often entitled "A note about the type".

What about the graphics used in these slides?

About the graphics in these slides

- KAIST logo: downloaded an Adobe Illustrator file from KAIST website; used Inkscape to save as PDF.
- Windows and Apple logos: JPGs off the web, cropped in the GIMP.
- Tux: from the SVG file at Wikipedia, used Inkscape to convert to PDF. Tux SVG ©Larry Ewing, Simon Budig, Anja Gerwinski.
- Other graphics: TikZ

Thank you

Tomorrow: gritty details

These slides (source and PDF) will be available from the Sage Days 9 wiki page, and wiki.sagemath.org/DanDrake/Days9Talks