

Last Revision Date:

October 25, 2007

Primary Authors:
Anwar Ghuloum, Eric
Sprangle, Jesse Fang, Gansha
Wu, Xin Zhou

Key Contributors:
Biao Chen, Yongjian Chen,
Zhao Hui Du, Zhenying Liu,
Mohan Rajagopalan,
Byoungro So, Zhi Gang Wang

Ct:
A Flexible Parallel
Programming Model for
Tera-scale Architectures

2

Table of Contents
Table of Contents ... 2
1.0 New Opportunities, New Challenges.. 3

1.1 Process and Architecture Trends.. 3
1.2 Programming Tera-scale Architectures .. 4
1.3 Ct: Nested Data Parallelism... 4

1.3.1 The Importance of Determinism ... 5
2.0 Sparse Matrices: An Example .. 6

2.1 The Challenge of Sparse Matrices .. 6
2.2 Unique Challenges for GPUs ... 7
2.3 Sparse Matrices with Ct .. 8

3.0 The Ct API...10
3.1 Ct Vectors: TVECs ..10
3.2 Ct Operators ..10

3.2.1 Element-wise Operators ...10
3.2.2 Collective Communication Operators ..10
3.2.3 Permutation..11
3.2.4 Nested Vectors ...11

3.3 Implementing Ct ..11
4.0 Concluding Remarks: The Future of Ct...13
5.0 Selected Bibliography ...14
6.0 Appendix: Ct Coding Examples ..15

6.1 Image Processing..15
6.2 Sparse Linear Solvers ..16
6.3 Sorting...17

7.0 Appendix: Typical Ct Operators ..21

An Example: Sparse Matrices

1.0 New
Opportunities,
New Challenges
Processor architecture is evolving towards more
software-exposed parallelism through two features:
multiple cores and wider SIMD ISA. At the same time,
graphics processing units (GPUs) are gradually adding
more general purpose programming features.

Two key software development challenges arise from
these trends. First, how do we mitigate the increased
software development complexity that comes with
exposing parallelism to developers? Secondly, how do
we provide portability across (increasing) core counts
and SIMD ISA?

Researchers at Intel’s Microprocessor Technology Lab
have developed a new programming model called Ct to
address both of these challenges. Ct is a deterministic
parallel programming model intended to leverage the
best features of emerging general-purpose GPU
(GPGPU) programming models while fully exploiting
CPU flexibility. A key distinction of Ct is that it is a
comprehensive data parallel programming model that
gives programmers the flexibility to write code for
multiple processor architectures. By contrast, most
GPGPU programming models take are designed around
the underlying constraints of the architecture for
which code will be written.

1.1 Process and Architecture
Trends
CPU designs are increasingly power-constrained. With
every new silicon process generation, linear
dimensions shrink by 30%, which has the following
implications:

• The area of die needed to hold a constant
number of transistors is reduced by half (0.72 =
0.5); alternatively, twice the number of
transistors will fit within the same die area.

• The capacitance of each transistor shrinks by
30%;

• The maximum voltage decreases by
approximately 10%; and

• The switching time of a transistor shrinks by
30% (at maximum voltage)

Based on the above, we can compute the implications
for power scaling. Specifically:

Power scales in proportion to the number of
transistors * capacitance per transistor * voltage2
* frequency, which = 2 * 0.7 * 0.92 * 1/.7 = 1.62x
per generation

While voltage may drop by slightly more than 10% per
generation, or capacitance may drop by slightly more
than 30%, this does not substantially affect power
scaling trends. Another way of looking at this is that
silicon scaling improves transistor density by 50% per
generation, but only reduces power 20% per
generation.

As a result, power efficiency is the ultimate goal
because power consumption is the ultimate limiter to
improving computational performance in silicon
technology:.The first order design concern for tera-
scale architectures is to improve computational power
efficiency (MIPS/watt) over traditional processors on
parallel workloads.

While increasing core count will continue to scale
performance, the hardware and power requirements
related to exposing parallelism in traditional out-of-
order processors must be addressed. Two of the main
techniques for writing explicit parallel code are long
vector ISA and simultaneous multi-threading. Each of
these techniques has strengths and weaknesses,
depending on the type of code the techniques are
intended to run.

Simultaneous multi-threading is a powerful technique
for hiding memory latency in applications with poor
locality, eliminating the need for more expensive out-
of-order techniques. But it requires more area, so it
should be used only to the point where it effectively
hides memory latency. Future architectures will rely
on longer SIMD vectors (e.g. 4, 8, 16 elements per
register) to improve power efficiency, but generally

White Paper Flexible Parallel Programming for Tera-Scale Architectures with Ct

4

there is a “harder” limit on the effectiveness of
increasing vector length: Increasing vector length
creates inefficiencies for algorithms that inherently
use shorter or unaligned vectors. Given the types of
code that we believe will be important in the future
(graphics rendering, media, etc, which utilize streaming
memory), architectures will have to strike the right
balance between these techniques. For example, we
expect it is appropriate to scale the number of cores at
about 2x per process generation (tracking Moore’s
Law), but the SIMD width will scale much more slowly.

These issues present the software developers with
several architectural variables to which they must
adapt.

1.2 Programming Tera-scale
Architectures
Independent software vendors (ISVs) are excited by
the peak throughput benefits of future Intel
architectures, but at the same time they are
concerned about the burden on the application
developer to write explicitly parallel code. Using
threads and vector intrinsics gives maximum flexibility
to the programmer, but at great expense of
programmer productivity, application portability and
scalability. Moreover, evolving vector lengths and
core counts are going to create performance scaling
problems for software developers. Backwards
compatibility in CPUs guarantees functional
correctness but does not address performance scaling,
which may regress as architecture evolves!

GPU hardware and software vendors have taken steps
toward solving this problem. Languages for GPUs
relieve the programmer of having to think about
threads or SIMD width by supporting, for example, the
DirectX programming model. In this model, a single
data element (pixel) of a collection (display surface) is
processed independent of neighboring data elements
(pixels). This simpler model of computation reflects the
underlying GPU architecture and is often called
streaming data parallelism.

GPU programming models are constrained in such a
way that the compiler and runtime can reason about
the application and extract the parallelism
automatically. Examples of this include DirectX, CUDA,
and Cg. If the programmer can reformulate the
application to work under GPU constraints, the

compiler/runtime can do the rest automatically.
However, reformulating the application to fit these
constraints often requires considerable programmer
effort, and can result in significantly less efficient
software algorithms. For example, it is difficult to
operate efficiently on linked lists or compressed data
structures, so applications that would naturally like to
use these types of algorithms must be reformulated to
use algorithms more consistent with GPGPU models.

Intel architecture is more general purpose than GPU
and other coprocessor architecture. Unlike GPUs, Intel
architectures have

1. Inter-core communication through substantial,
coherent cache hierarchies

2. Efficient, low latency thread synchronizations
across the entire processor array

3. Narrower effective SIMD width

More general purpose hardware allows Intel
architecture to run more general purpose software
algorithms (for example, algorithms that employ linked
lists). So while Intel architecture can run applications
written to use a GPU programming model, these
applications are more constrained than necessary.
That is, it makes sense to define a constrained
programming model so the compiler and runtime can
extract the parallelism. However, a model that is less
constrained than most GPGPU models is highly
desirable, so that applications do not have to be
reformulated as substantially. At a high level, this is
the goal of Ct: to define a constrained programming
model that efficiently and portably targets highly
parallel general purpose cores, such as Intel multi-core
and tera-scale systems. To ease incremental adoption,
Ct seamlessly extends C/C++ and can be used with
legacy threading APIs.

1.3 Ct: Nested Data Parallelism
It often is convenient for the programmer to think of
the computing resources provided by a multi-core CPU
as an engine for data-parallel computation. The basic
idea is that applications exhibit a lot of parallelism
through operations over collections of data.
Abstracting the underlying hardware threads, cores,
and vector ISA as computation over collections of data
greatly simplifies the task of expressing parallelism in
an architecture-independent fashion. Ct provides a

An Example: Sparse Matrices

nested data-parallel abstraction that is initially familiar
to most programmers, but which provides extended
functionality to address irregular algorithms.

Irregular algorithms are broadly defined as those that :

• require dynamic data types, such as sparse
matrices, linked lists, or trees;

• have high likelihood of contended
synchronization, such as reductions and prefix-
sums in which elements of a collection are
“summed” using a combining operator; and/or

• have moderate control flow, such as well-
structured conditional nests, nested loops, and
recursive functions.

Intel multi-core architecture (including tera-scale
architecture) addresses these requirements
efficiently, whereas GPUs generally do not. Ct aims to
address the software stack by providing a data parallel
model that supports irregular algorithms, whereas
GPGPU programming models do not. An important
benefit of Ct for the software developer is that it
scales forward with increasing core count and vector
ISA width. For example, a Ct application will scale from

dual- and quad-core systems to tera-scale systems.

1.3.1 The Importance of
Determinism
Like many of its flat data-parallel brethren, Ct is
deterministic. Determinism guarantees that program
behavior is identical, on one core or many cores. This
essentially eliminates an entire class of programmer
errors—namely, data races. Ct also provides a
predictable high-level programming model. As a result,
the average programmer can use Ct operators with a
basic understanding of the cost and scalability of their
use. This is difficult to achieve for unconstrained
threading models.

The Ct programming model accomplishes the difficult
task of combining powerful, high-performance data
parallel constructs with completely deterministic
behavior. This is essential for tera-scale programming
models, to enable the development of programs that
are both powerful and easy to write.

Figure 1-1 The Ct API in the software development
process.

C/C++
Compiler

C++
1 2

0 0

0 5

0 6

0 3

0 0

0 0

4 7

1 2 5

63

4

7

Ct-based Parallel Data Types

C/C++
libs

Ct
Runtime

Physics, Image,
Video, Signal
Processing, …

Tera-scale

Scalable,
Adaptive

Performance

White Paper Flexible Parallel Programming for Tera-Scale Architectures with Ct

6

2.0 Sparse
Matrices: An
Example
2.1 The Challenge of Sparse
Matrices
Many useful data structures have unusual (or irregular)
organization because of the efficiency of such
representations. For example, dense (or fully
populated) matrices are required when the problem
formulation dictates that most elements of the matrix
are significant. However, often the particular algebraic
formulation of a problem sparsely populates elements
in the matrix with meaningful values. One example is
large scale physics simulation. In these simulations, the
logical size of a dense matrix might be hundreds of
megabytes. By contrast, a sparse matrix
representation that only stores non-zero matrix
elements might only hold one megabyte of data. This
degree of data compression is essential in desktops,
mobile, and console gaming platforms.

Dense representations simplify the parallelization of
such code. Walking through the elements in a dense
representation is often performed in regular patterns,
such as column or row order. This means that the
control paths and data access patterns are very
predictable (one feature of regularity in an algorithm).
For example, the code in Example 2-1 can be used to
walk over a dense matrix A in row order.

Example 2-1: Dense matrix traversal

 for (row = 0; row < row_num; row++) {

 for (col = 0; col < col_num; col++) {

 …touch elements of A[row][col]…

 }

 }

Generally there are two factors that make this a
relatively manageable exercise in parallelization:

1. Depending on the algorithm being
implemented, there may be parallelism in one
or both of the enclosing loops. For large

matrices, these loops provide sufficient
parallelism that can be trivially decomposed
into parallel sub-loops.

2. The data accessed within one or both of these
loops is distinct (or independent, in compiler
terms).

Sparse matrices are much more difficult to parallelize.
There are many forms of sparse matrix. We will
address two forms that pose unique challenges for
programmers: Compressed Sparse Column (CSC) and
Compressed Sparse Row (CSR) matrices.

The basic idea of CSC and CSR is to store only non-zero
elements of the matrix, in column or row order,
respectively. With each non-zero element, the
programmer will also store the row or column index.

Consider the sparse matrix in Example 2-2. In CSR and
CSC formats, the matrix would be stored as three
vectors, the nonzero values, the row or column
pointers, and the column and row indices, respectively.
Schemas for traversing the two representations are
shown in the Example.

Example 2-2: Sparse matrix representation and
traversal

 A = [[0 1 0 0 0]

 [2 0 3 4 0]

 [0 5 0 0 6]

 [0 7 0 0 8]

 [0 0 9 0 0]]

 The CSR Representation of A:

 Values = [1 2 3 4 5 6 7 8 9]

 ColIdx = [1 0 2 3 1 4 1 4 2]

 RowP = [0 1 4 6 8 9]

 for (row = 0; row < row_num; row++) {

 for (elt = RowP[row]; elt < RowP[row+1];
elt++) {

 int col = ColIdx[elt];

 …touch elements of A[row][col]…

 }

 }

 The CSC Representation of A:

An Example: Sparse Matrices

 Values = [2 1 5 7 3 9 4 6 8]

 RowIdx = [2 1 3 4 2 5 2 3 4]

 ColP = [0 1 4 5 6 7 9]

 for (col = 0; col < col_num; col++) {

 for (elt = ColP[col]; elt < ColP[col+1];
elt++) {

 int row = RowIdx[elt];

 …touch elements of A[row][col]…

 }

 }

Two factors make this code difficult to parallelize
efficiently.

1. The inner loop in both cases has a varying and
unpredictable trip count. For example, the trip
count might be determined by where a game
player is looking in a particular scene in a game.
This makes it difficult to predict the workload
for each inner loop invocation. Thus it is
difficult to balance the workload among
threads.

2. There is an indirection through the column or
row index array that will create aliases and
dependences in most computations that might
use sparse matrices.

Consider sparse matrix vector product (SMVP), a
common kernel in gaming and RMS applications. In
SMVP, a sparse matrix is multiplied by a vector. Like
dense matrix vector multiplication, computing a sparse
matrix vector product requires taking the inner
product of each row of the matrix with the vector. For
the CSR sparse matrix, the loop traverses the data in
row order, similar to the dense computation. For the
CSC sparse matrix, it is simpler to traverse the data in
column order, updating the result vector when non-
zero row elements occur.

It is worth observing some of the broader patterns of
these computations in order to comprehend the
implications for parallelism:

• In CSR, the expression vec[ColIdx[elt]] denotes
that vec is permuted by the contents of ColIdx.

This looks similar to a gather operation in
GPUs.

• In CSC, the expression vec[col] implied that
each element of vec must be replicated
(ColP[col+1]-ColP[col]) times. This can be
viewed as a special kind of gather operation,
but more complex than those that are typically
supported in GPU hardware.

• In CSR, the left-hand side expression
“product[row]+= …” denotes that we are
summing (or reducing) all the elements
computed in the right-hand side of that
expression for the inner loop.

• In CSC, the expression “product[RowIdx[elt]]
+=…” implies that we are performing what is
called a combining-send, or alternatively a
multi-reduction or combining-scatter.

Note that the last two observations above are similar,
except that the data is effectively pre-sorted by
destination for the CSR form. That is, the inner
product to compute an element of the result for CSR
occurs entirely within one invocation of the inner loop,
whereas it takes place across many invocations of the
inner loop for CSC.

We can now create a conceptual parallel pattern for
performing sparse matrix computations: First, permute
the vector, then perform an element-wise product,
and finally, perform some flavor of reduction.

2.2 Unique Challenges for GPUs
Special purpose processors often lack many of the
mechanisms required for efficient implementation of
sparse matrix kernels. For example, GPUs lack the
basic facilities required to support efficient, low-
latency cross-chip inter-thread communication and
synchronization. Cache coherence provides a vehicle
for core-to-core communication, while high-
performance interconnects provide low latency.

Inter-thread synchronization and communication of
partially computed results is essential to support
collective communication primitives, such as reductions
and prefix-sums. For example, to reduce the values of
an array, the standard approach is to use an algorithm
to partition the elements of the array among threads,

White Paper Flexible Parallel Programming for Tera-Scale Architectures with Ct

8

reduce the values locally, and then combine the partial
results from each thread. To combine the partial
results from each thread, the threads must be able to
communicate with each other.

For a general purpose multi-core architecture,
synchronization and communication between threads
requires the use of coherent memory locations and
locks; no external memory bandwidth is consumed. For
a GPU, on the other hand, the algorithm is quite costly
in terms of memory bandwidth. The only mechanism
for inter-thread synchronization and communication is
through access to external memory. The GPU
reduction algorithm must then repeatedly write and
then read partial results to and from external memory.
For an array of length n, the algorithm uses a
progressive combining scheme whereby adjacent pairs
of elements are combined with the results written out
to memory in each phase. The first phase reduces to
n/2 elements, the second to n/4 elements, and so on.
In all, this requires O(log n) passes through memory,
consuming O(n*log n) memory bandwidth.

Sparse-matrix operations require more complex
flavors of collective communication primitives, such as
segmented reductions, multi-reduce, and prefix-sum.
Operations such as these are significantly more
complex on special purpose processors, requiring
additional passes through memory. This is a principal
reason why such primitives historically have been
restricted or unavailable on GPGPU programming

models.

on GPGPU programming models.

Figure 2-1 Ct-based physics simulation (requires sparse
matrices): “Golden Pigs”

2.3 Sparse Matrices with Ct
Ct introduces a new (template-style) polymorphic type,
called a TVEC. TVECs are write-once vectors that
reside in a vector space segregated from native C/C++
types. For example, a vector of non-zeros for the
stiffness matrix in a cloth simulation may be declared
as:

TVEC<F64> nonzeros;1

The column indices for each nonzero and row sizes for
the sparse matrix (assuming a Compressed Sparse
Column representation) can be represented similarly:

TVEC<I32> RowIdx;

TVEC<I32> ColP;

The types of primitives used for this particular sparse
matrix-vector product fall into three of the Ct operator
categories:

• Element-wise operators that support simple
unary, binary and n-ary operators, such as
addition, multiplication, etc. For example, the
following code performs an element-wise
multiplication of two vectors:
TVEC<F64> product = multiply(nonzeros,
expv);
…or, using operator overloading:
TVEC<F64> product = nonzeros*expv;

• Collective communication operations, such as
reduction, prefix-sum, or combining-send.
Multi-core CPUs support these very efficiently,
though many accelerators (including GPUs)
support only a few of these operations
efficiently. For example, to perform an
indexed reduction, or a combining-send, of a
vector, we use a multi-reduce primitive. In Ct,
this primitive is invoked implicitly via
reductions for indexed vector shapes. We
apply the vector shape and perform the
reduction:
product =
product.applyNesting(RowIdx,ctIndex);
TVEC<F64> innerproduct =
addReduce(product,RowIdx);

1 For cloth simulation, we are likely to use a block sparse
symmetric matrix, but we elide these details for simplicity of
presentation.

An Example: Sparse Matrices

• Permutation operations which allow both
structured and unstructured reordering and
replication of data. For example, the following
code creates a new vector expv comprised of a
variable number of copies (denoted by each
element of cols) of each element of v:
TVEC<F64> expv = distribute(v,ColP);

Combining the code above, we can write a sparse
matrix-vector product, as illustrated in Example 2-3.

Example 2-3: Sparse matrix vector product with Ct

 TVEC<F64> sparseMatrixVectorProducSC(

 TVEC<F64> Values,

 TVEC<I32> RowIdx,

 TVEC<I32> ColP,

 TVEC<F64> v) {

 TVEC<F64> expv = distribute(v,ColP);

 TVEC<F64> product = Values*expv;

 product = product.applyNesting(RowIdx,
ctIndex) ;

 TVEC<F64> result = product.addReduce();

 return result;

}

White Paper Flexible Parallel Programming for Tera-Scale Architectures with Ct

10

3.0 The Ct API
3.1 Ct Vectors: TVECs
The TVEC, which is the basic type of vector in the Ct
API, is a managed parallel vector. TVECs are allocated
and managed in a segregated memory pool, to ensure
the safety of parallel operation on the vectors. Normal
C and C++ data structures are generally unsafe
because of unrestricted effects and use of aliases.

Data must be explicitly copied into and out of vector
space. The only operators allowed on TVECs are Ct
operators, which are functionally pure. It is important
to note that TVECs are logically passed around by
value. This property guarantees the safety of
parallelism and the aggressive optimizations that make
parallelism efficient.

The base types of TVECs are drawn from a set of
typical pre-defined scalar types. A TVEC variable may
be declared without an instantiated base type, but the
compiler must be able to infer the type. Examples of
base types include I32 (32-bit integer), I64 (64-bit
integer), F32 (Float), F64 (Double), and Bool (Boolean).
Ct also includes a C struct-like base type for user-
defined base types (such as color pixels) and fixed size
arrays.

The internal representation of TVECs is opaque to the
programmer and may include meta-data that is useful
to the runtime. A TVEC may be declared as follows:

TVEC<I8> Red;

TVEC<F32> Xes;

Values in native C/C++ memory space are explicitly
copied into and out of Ct managed vector space using
copyin and copyout operators:

Red = copyin(CRed, Height*Width, I8); //
Red CRed

copyout((void*)CXes,Xes); // CXes Xes

There are several flavors of each of these operators
for different data types and shapes.

3.2 Ct Operators
Ct operators are logically free of side effects, from the
programmer’s perspective. As such, each Ct operator
logically returns a new TVEC (note that the C++

operator overloading is used to write “cleaner” or more
readable code):

ScaledRed = Red*0.5; // ScaledRed a new
TVEC

The API encompasses a broad range of rich
functionality. Within each class of facility, element-
wise, collective communication, and permutation
operators, there are many subclasses of operations,
each defined over all TVEC types. Each Ct operator
generally has the form ctOpClass, where Op is the
particular flavor of operator and Class is the operator
class. For example, addReduce denotes the reduction
operator using addition.

3.2.1 Element-wise Operators
Element-wise operators are typically referred to as
“embarrassingly” parallel, requiring no interactions
between the computations on each vector element. In
functional languages, these can be implemented with
map operations, while in OpenMP they can be
implemented as parallel for loops. An example of an
element-wise operation is the addition of two vectors:

TVEC<F32> A = B + C; // “+” resolves to add

Note that this code generically performs an element-
wise addition of two vectors, regardless of the “shape”
of the two vectors (i.e., their length, dimensionality,
irregularity).

3.2.2 Collective Communication
Operators
Collective communication operators tend to provide
distilled computations over entire vectors and are
highly coordinated. While they have a high degree of
interference, they can be structured so that there is
parallelism in colliding writes, and they typically scale
in performance linearly with processor count, with
little or no hardware support. These operators are
called collective communication operators in MPI and
reductions in OpenMP, though neither provides the
rich set of operations that Ct does. In functional
languages, these are termed fold operations or list
homomorphisms.

There are two kinds of collective communication
primitives in general, though there are several
variations of each depending on the type of vector on
which operations are being performed. Broadly, the

The Ct API

two fundamental types of operations are reductions
and prefix-sums (also called scans). Reductions apply
an operator over an entire vector to compute a
distilled value (or values, depending on the type of
vector). Prefix-sums perform a similar operation, but
return a partial result for each vector element. For
example, a addReduce sums over all the elements of a
vector if the vector is flat. More concretely,
addReduce([1 0 2 -1 4]) yields 6. Likewise,
addPrefix([1 0 2 -1 4]) yields [0 1 1 3
2].

If the vector is nested, the behavior will be as
described in Section 3.2.4.

3.2.3 Permutation
A permutation operator in Ct is any operator that
requires moving data from its original position to a
different position. An example of this is a gather
operation, which uses an index array to collect values
of a vector in a particular order. Permutations run the
gamut, from arbitrary permutations with arbitrary
collisions (occurring when two values want to reside in
the same location) to well-structured and predictable
permutations where no collisions can occur. For
collisions, it is recommended that programmers make
use of the collective communication operators. An
example of a well-structured (and efficient)
permutation operator is pack, which uses a flag vector
to select values from a vector in the source vector
order. Hardware can typically support this operator
fairly efficiently.

3.2.4 Nested Vectors
Ct’s support for nested vectors is a generalization that
allows a greater degree of flexibility than is otherwise
found in most data parallel models. TVECs may be flat
vectors or regular multi-dimensional vectors. They also
may be nested vectors of varying length, which allows
for very expressive coding of irregular algorithms,
such as other variants of sparse matrix
representations, or byproducts of divide-and-conquer
algorithms.

The vector value [a b c d e f] is a flat (or 1-
dimensional) vector. The vector [[a b][c d e
f]] holds the same element values, but is a vector of

two vectors of lengths 2 and 4. The second vector
might represent a partitioning of the first vector’s data
based on certain attributes (such as a threshold value).

Ct operators work on nested TVECs seamlessly. The
behavior of element-wise operators is the same for
nested TVECs as for flat vectors. For example,
add([[a b][c d e f]], [[g h][i j k
l]]) yields [[a+g b+h][c+i d+j e+k f+l]].
The power of nested versus flat TVECs is primarily
differentiated through the behavior of collective
communication primitives.

Collective communication primitives applied to nested
TVECs “respect the boundaries” of the subvectors by
applying the operator to each subvector
independently. For example, addReduce([a b c d
e f]) yields the singleton vector [a+b+c+d+e+f],
while addReduce([[a b][c d e f]) yields the
two- element vector [a+b c+d+e+f].

The internal representation of a nested vector is
opaque to the programmer. The nesting structure is
accessible through several facility routines, but these
routines generally should not be necessary. Other
vector types supported by Ct are indexed vectors,
where there are indices associated with each value.

3.3 Implementing Ct
Ct provides several levels of abstraction below the
high-level API presented in this paper, to accommodate
varying degrees of programmer expertise. For
instance, for more sophisticated programmers, lower
levels of abstraction expose task granularity and
machine-width independent vector ISA intrinsics and
optimizations.

Earlier generations of data parallel programming
models and languages benefited from extraordinarily
large data sets and highly parallel (high bandwidth)
memory systems. Because of this, the optimization
pressure on task granularity was not as critical as
simply identifying parallel regions of code and basic
operator implementations. For tera-scale architecture,
such implementations would yield code that is memory
bandwidth limited and overly burdened with threading
overhead. The computational power of tera-scale
systems must be coupled with intelligent optimization

White Paper Flexible Parallel Programming for Tera-Scale Architectures with Ct

12

that maximizes the amount of calculation per memory
operation.

The top priority of the Ct compiler and runtime is to
minimize threading overhead and make effective use
of memory bandwidth. To accomplish this, Ct utilizes a
fine-grained, data-flow threading model. Essentially,
the Ct computation is decomposed into a task
dependence graph that is optimized by the compiler by
merging similar tasks into coarser-grained tasks.

The task dependence graph consists of data parallel
sub-primitives. These sub-primitives are the building
blocks of data parallel computing, comprising local
phases of computation that entail no inter-processor
synchronization and global phases that perform
structured write combining and synchronization.
Similar sub-primitives usually can be fused together
into coarser grained tasks. This simultaneously
increases task granularity and locality of data access,
minimizing off-chip memory accesses.

Another distinction of Ct’s approach is that threading
decisions are made dynamically. Each task is
represented by a spawn point, but the precise number
of sub-tasks created is dependent on both the number
of cores available and the size of the underlying vector
being processed. The Ct runtime is highly adaptive to
varying data sizes and core loads.

Figure 3-1 How Ct is compiled.

product = A*expv

SMVP = ctAddReduce(product);

Non-fused Fused Threaded

…

“Static” or Compile-Time Dynamic

Local Multiply

Local AddReduce

Global AddReduce

Multiply

AddReduce

The Future of Ct

Intel Confidential 13

4.0 Concluding
Remarks: The
Future of Ct
Ct implements many more features than described in
this white paper, and it enables several additional
key features that will be implemented in the coming
months. One important future feature is
deterministic task parallelism. As previously
observed, determinism is a critical property for
programmer productivity, guaranteeing that program
execution is functionally predictable. Through
determinism, data races are entirely eliminated as a
class of programmer errors.

The underlying threading model used by Ct supports
a fine-grained, adaptive dependent tasking model.
While this is used to implement the higher-level data
parallel constructs, revealing implicit task parallelism,
Ct will include constructs for deterministic task
parallelism.

Ct supports a high-level performance model that can
be used by the average programmer to guide
algorithmic choice. For example, element-wise
operators generally scale linearly in performance on
Intel multi-core and tera-scale architecture for large
vectors. If the operations are used for small vectors,
the underlying runtime knows not to use as many
cores for the computation, mitigating threading
overhead. Similarly, collective communication
operators generally scale linearly with core count,
but have an additional cost associated with
synchronization. The synchronization patterns vary
by architecture, but are generally asymptotic in core
count, not in vector size. So, for large vectors, the
linear scaling component tends to dominate.

Ct provides a virtual laboratory in which to
experiment with more exotic tera-scale programming
features, such as lossy, real-time, and adaptive
computation. Some of these features are used on an
ad hoc basis in many high- performance algorithms
and applications, notably those with real-time

constraints, such as media and gaming. A key
objective of Ct is to create a framework in which
such performance breakthroughs (sometimes
pejoratively and unfairly misunderstood as hacks) are
supported systematically.

White Paper Flexible Parallel Programming for Tera-Scale Architectures with Ct

14 Intel Confidential

5.0 Selected
Bibliography
Guy Blelloch. Vector Models for Data-Parallel
Computing. MIT Press. ISBN 0-262-02313-X. 1990.

Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C.
Hardwick, Jay Sipelstein, and Marco Zagha.
Implementation of a Portable Nested Data-Parallel
Language. Journal of Parallel and Distributed
Computing (JPDC), 21(1), April 1994.

Manuel M. T. Chakravarty and Gabriele Keller and
Roman Lechtchinsky and Wolf Pfannenstiel. Nepal ---
nested data parallelism in Haskell. In R. Sakellariou, J.
Keane, J. R. Gurd, and L. Freeman, editors, Proc. 7th
International Euro-Par Conference, volume 2150 of
Lecture Notes in Comput. Sci., pages 524--534.
Springer-Verlag, 2001.

Allan L. Fisher , Anwar M. Ghuloum, Parallelizing
complex scans and reductions, Proceedings of the
ACM SIGPLAN 1994 conference on Programming
language design and implementation, p.135-146,
June 20-24, 1994, Orlando, Florida, United States.

Daniel P. Friedman and David S. Wise, Aspects of
applicative programming for parallel processing. IEEE

Transactions on Computers, C-27(4):289–296, Apr.
1978.

Anwar M. Ghuloum, Allan L. Fisher, Flattening and
parallelizing irregular, recurrent loop nests, ACM
SIGPLAN Notices, v.30 n.8, p.58-67, Aug. 1995.

Matthew Hammer, Umut A. Acar, Mohan Rajagopalan,
Anwar Ghuloum, A Proposal for Parallel Self-
Adjusting Computation, In Proceedings of the
Workshop on Declarative Aspects of Multicore
Programming (DAMP 2007), January 2007

David A. Krantz, Robert H. Halstead, Jr., and Eric Mohr,
Mul-T: a high-performance parallel lisp. In Proceedings
of the SIGPLAN ’89 Conference on Programming
Language Design and Implementation, pages 81–90,
1989.

Byoungro So, Anwar Ghuloum, Youfeng Wu.
Optimizing data parallel operations on many-core
platforms. First Workshop on Software Tools for
Multi-Core Systems (STMCS), Manhattan, NY, 2006,
pp.66--70.

Leslie G. Valiant. A bridging model for parallel
computation. Communications of the ACM, 33(8):103-
-111, August 1990.

The Future of Ct

Intel Confidential 15

6.0 Appendix: Ct Coding Examples
6.1 Image Processing
Image processing generally is fairly straightforward in data parallel programming models, even those that are flat.
There is a slight difference in coding style between the “streaming” style of local kernel specification and the
global data parallel approach. In the kernel style, only the local computation is specified and is assumed to be
applied at every pixel (similar to the graphics model). In the data parallel style, the entire image is operated on at
once, though this approach can be relaxed through the use of Ct’s generic operators (e.g., genBinary). However,
the code generally is not substantially more or less compact with either approach, as illustrated in the color
conversion code below.

TVEC<F32> colorConvert(TVEC<F32> rchannel, TVEC<F32> gchannel,

 TVEC<F32> bchannel, TVEC<F32> achannel,

 F32 a0, F32 a1, F32 a2, F32 a3)

{

 return (rchannel * a0 + gchannel * a1 + bchannel * a2 + achannel * a3);

}

Convolutions are somewhat more substantial and broadly useful in both image processing and more general signal
processing domains. Because convolutions require a neighborhood of pixels to compute the filter, the source
image is “shifted” about in order to place the required pixel at the computed pixel. These shifts are logically
creating new values, though in this case, the compiler and optimizer trivially optimize away any copying and simply
refer to a single source image. Following is an example of convolution code:

TVEC<F32> Convolve2D3x3(TVEC<F32> pixels, I32 channels, TVEC<F32> kernel) {

TVEC<F32> respixels;

 // directions[m][n] is a constant TVEC of size 2 with values {m-1, n-1}

 respixels += shiftPermute(pixels, directions[0][0]) * kernel[0][0];

 respixels += shiftPermute(psixels, directions[0][1]) * kernel[0][1];

 respixels += shiftPermute(pixels, directions[0][2]) * kernel[0][2];

 respixels += shiftPermute(pixels, directions[1][0]) * kernel[1][0];

 respixels += pixels * kernel[1][1];

 respixels += shiftPermute(pixels, directions[1][2]) * kernel[1][2];

 respixels += shiftPermute(pixels, directions[2][0]) * kernel[2][0];

 respixels += shiftPermute(pixels, directions[2][1]) * kernel[2][1];

 respixels += shiftPermute(pixels, directions[2][2]) * kernel[2][2];

 return respixels

}

White Paper Flexible Parallel Programming for Tera-Scale Architectures with Ct

16 Intel Confidential

6.2 Sparse Linear Solvers
Sparse linear solvers are quite common in high-performance applications, such as physics simulations and
many scientific and machine learning applications. One technique that is commonly used is the
preconditioned conjugate gradient method, illustrated in the Ct code below, which produces a cloth
simulation. Note that the key kernel used is a CSR sparse matrix vector product.

Figure 6-1 Ct-based Cloth simulation on Core 2, Core 2 Duo, Core 2 Quad

First, we define a C structure to contain the linear system.

typedef struct {

 CTSparseMatrix A;

 TVEC<F64> b;

 Float e; // Epsilon

 CTSparseMatrix pM; //Preconditioning matrix.

 CTSparseMatrix pMinv; //Inverse preconditioning matrix.

} CTLinearSystem;

The solver uses the sparse matrix vector product kernel (called smvMul below).

The Future of Ct

Intel Confidential 17

TVEC<F64> pCG(CTLinearSystem &lsys, TVEC<F64> x0){

 int i = 0;

 F64 alpha, delta0=0, delta1;

 TVEC<F64> v_x = x0;

 TVEC<F64> v_r = lsys.b - smvMul(lsys.A, v_x);

 TVEC<F64> v_pr = smvMul(lsys.pMinv, v_r);

 delta1 = addReduce(v_r * v_pr);

 while((delta > delta0 * lsys.e) && (i < IterationMax)){

 TVEC<F64> v_q = smvMul(lsys.A, v_pr);

 alpha = addReduce((v_pr * v_q));

 alpha = delta/alpha;

 v_x = v_x + (v_pr * alpha);

 v_r = v_r - (v_q * alpha);

 TVEC<F64> v_s = smvMul(lsys.pMinv, v_r);

 delta0 = delta1;

 delta1 = addReduce(v_r * v_s);

 v_pr = v_s + (v_pr * (delta1/delta0));

 i++;

 }

 return v_x;

}

This cloth simulation requires a bit more code to integrate forces in the system and detect collisions. Collision
detection, in particular, is extremely challenging to parallelize for flat data parallel systems, but simplified greatly
through nested data parallelism.

6.3 Sorting
While sorting is typically used as an illustrative algorithm, the kernel illustrated below forms part of the
implementation for quick KD-tree construction in Ct. The quicksort is simpler to use to illustrate the tradeoffs in
implementation.

The problem with recursive sorting (and divide-and-conquer algorithms, in general) is that the (superficial) data
parallelism is maximized at the root of the algorithm’s call graph and minimized at the leaves. Similarly, task
parallelism is (superficially) minimized at the root and maximized at the leaves. Taking the task versus data
parallelism view of quicksort, it appears to be difficult to fit into a single programming model. The approach is
illustrated in the code and Quicksort graphic below.

TVEC<F64> ctQsort(TVEC<F64> Keys) {

 TVEC<F64> pivot, lowerKeys, pivotKeys, upperKeys;

 TVEC<Bool> pivotFlags;

 I32 pivot;

White Paper Flexible Parallel Programming for Tera-Scale Architectures with Ct

18 Intel Confidential

 if (length(Keys) == 0)

 return Keys

 pivot = extract(Keys, 0)

 pivotFlags = lessThan(Keys, Pivot);

 lowerKeys = pack(Keys, pivotFlags);

 pivotFlags = equal(Keys, Pivot);

 pivotKeys = pack(Keys, pivotFlags);

 pivotFlags = greaterThan(Keys, Pivot);

 UpperKeys = pack(Keys, pivotFlags);

 return cat(ctQsort(lowerKeys),

 cat(pivotKeys,ctQsort(upperKeys));

}

Figure 6-2 Decreasing data parallelism and increasing task parallelism in Quicksort.

Nested data parallelism unifies data parallelism and divide-and-conquer task parallelism. Sub-tasks are not created
as parallel threads, but rather are manifest as partitions in a nested vector. We use partition to create these sub-
partitions, and then recurse on the entire vector. The power of nested data parallelism for this type of irregular
control flow is clearly illustrated through the resulting unification of data and task parallelism, as shown below:

TVEC<F64> ctQsort(TVEC<F64> Keys, TVEC<Bool> Mask) {

 TVEC<F64> pivot, partitionedKeys,

 TVEC<Bool> newMask;

 TVEC<I32> pivotPartitions

 if (equals(orReduce(orReduce(Mask)), 0)) // since mask is nested, have to do this twice

 return flatten(Keys);

33 55 44 00 22 77 11Keys 33 55 44 00

33 00 22 1133 00 22 11 55 44 7755 44 77

00 1100 11 33 2233 22 55 4455 44 77

00 11 22 33 44 55

qsort qsort

qsort qsort qsort qsort

qsort qsort qsort qsort qsort qsort

The Future of Ct

Intel Confidential 19

 pivot = extract(Keys, ctNewVector(ctNumPartitions(Keys),0,I32));

 pivotPartitions = compare(Keys, Pivot, Mask);

 partitionedKeys = partition(Keys, pivotPartitions);

 partitionedMask = partition((Mask && pivotPartitions), pivotPartitions);

 return ctQsort(partitionedKeys, partitionedMask);

}

Figure 6-3 Unifying Quicksort’s data and task parallelism in Ct via nested data parallelism.

33 55 44 0033 55 44 00 22 77 11Keys

33 00 22 1133 00 22 11 55 44 77

00 1100 11 33 2233 22 55 4455 44 77

qsort

00 11 22 33 44 55 77

qsort

qsort

Appendix: Typical Ct Operators

Intel Confidential 21

7.0 Appendix: Typical Ct Operators
Table 7-1 A selection of typical Ct Operators

Facilities
Managed Vector/Native Space Copying
copyIn, copyin2D, copyin3D, copyout
Vector Generators
cat, repeat, replicate, replace, index, copy, newVector
Vector Utilities
extract, copy, length
Nested Vectors
newNestedVector, applyNesting, copyNesting, setRegular2DNesting, setRegular3DNesting,
getNesting, getNestAsVec

Element-wise
Vector-Vector
add, sub, mul, div, equal, min, max, mod, lsh, rsh, greater, less, geg, leq, neq, ior, and,
xor, power, divTan, select, map
Vector-Scalar (also, Scalar-Vector variants exist)
addVectorScalar, subVectorScalar, subScalarVector, mulVectorScalar, divVectorScalar,
divScalarVector, equalVectorScalar, minVectorScalar, maxVectorScalar, modVectorScalar,
lshVectorScalar, rshVectorScalar, greaterVectorScalar, lessVectorScalar, geqVectorScalar,
leqVectorScalar, neqVectorScalar, iorVectorScalar, andVectorScalar, xorVectorScalar,
genVectorScalar, map
Unary
abs, not, log, exp, sqrt, rsqrt, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, floor,
ceiling, round, map

Collective Communication
Reduction
addReduce, mulReduce, minReduce, maxReduce, andReduce, iorReduce, xorReduce, reduce
Scan/Prefix-Sum
addScan, mulScan, minScan, maxScan, andScan, iorScan, xorScan, scan

Permutation
Pack/Unpack
pack, unpack
Scatter/Gather
scatter, gather
Shift/Rotate
leftShiftPermute, rightShiftPermute, leftRotatePermute, rightRotatePermute,
shiftDefaultPermute, rotateDefaultPermute
Partition
partition, unpartition
Miscellaneous
defaultPermute, omegaPermute, butterflyPermute, distribute

The information in this document is furnished for informational use
only, is subject to change without notice, and should not be construed
as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear
in this document or any software that may be provided in association
with this document. Intel may make changes to dates, specifications,
product descriptions, and plans referenced in this document at any
time, without notice.

The information contained in this document is provided on an “AS IS”
basis, and to the maximum extent permitted by applicable law, Intel
Corporation hereby disclaims all warranties and conditions, either
express, implied or statutory, including but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, fitness for
a particular purpose, accuracy, completeness, or non-infringement of
any intellectual property right.

Intel Corporation or other parties may have patents or pending patent
applications, trademarks, copyrights, or other intellectual property
rights that relate to the presented subject matter. The furnishing of
documents and other materials and information does not provide any
license, express or implied, by estoppel or otherwise, to any such
patents, trademarks, copyrights, or other intellectual property rights.
 Any license under such intellectual property rights must be express
and approved by Intel in writing.

Except as permitted by license, no part of this document may be
reproduced, stored in a retrieval system, or transmitted in any form or
by any means without the express written consent of Intel
Corporation.

Intel, the Intel logo, Leap Ahead, Intel XScale, Intel XDB JTAG Debugger
for Intel JTAG Cable, JTAG, MMX, Pentium, and Wireless MMX are
trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.
Bluetooth is a trademark owned by its proprietor and used by Intel
Corporation under license.
*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All rights reserved.

