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1.0 New 
Opportunities, 
New Challenges 
Processor architecture is evolving towards more 
software-exposed parallelism through two features: 
multiple cores and wider SIMD ISA. At the same time, 
graphics processing units (GPUs) are gradually adding 
more general purpose programming features.  

Two key software development challenges arise from 
these trends. First, how do we mitigate the increased 
software development complexity that comes with 
exposing parallelism to developers?  Secondly, how do 
we provide portability across (increasing) core counts 
and SIMD ISA?  

Researchers at Intel’s Microprocessor Technology Lab 
have developed a new programming model called Ct to 
address both of these challenges. Ct is a deterministic 
parallel programming model intended to leverage the 
best features of emerging general-purpose GPU 
(GPGPU) programming models while fully exploiting 
CPU flexibility. A key distinction of Ct is that it is a 
comprehensive data parallel programming model that 
gives programmers the flexibility to write code for 
multiple processor architectures. By contrast, most 
GPGPU programming models take are designed around 
the underlying constraints of the architecture for 
which code will be written.   

1.1 Process and Architecture 
Trends  
CPU designs are increasingly power-constrained. With 
every new silicon process generation, linear 
dimensions shrink by 30%, which has the following 
implications: 

• The area of die needed to hold a constant 
number of transistors is reduced by half (0.72 = 
0.5); alternatively, twice the number of 
transistors will fit within the same die area. 

• The capacitance of each transistor shrinks by 
30%; 

• The maximum voltage decreases by 
approximately 10%; and  

• The switching time of a transistor shrinks by 
30% (at maximum voltage)  

Based on the above, we can compute the implications 
for power scaling.  Specifically:  

Power scales in proportion to the number of 
transistors * capacitance per transistor * voltage2 
* frequency, which = 2 * 0.7 * 0.92 * 1/.7 = 1.62x 
per generation  

While voltage may drop by slightly more than 10% per 
generation, or capacitance may drop by slightly more 
than 30%, this does not substantially affect power 
scaling trends.  Another way of looking at this is that 
silicon scaling improves transistor density by 50% per 
generation, but only reduces power 20% per 
generation. 

As a result, power efficiency is the ultimate goal 
because power consumption is the ultimate limiter to 
improving computational performance in silicon 
technology:.The first order design concern for tera-
scale architectures is to improve computational power 
efficiency (MIPS/watt) over traditional processors on 
parallel workloads.  

While increasing core count will continue to scale 
performance, the hardware and power requirements 
related to exposing parallelism in traditional out-of-
order processors must be addressed.  Two of the main 
techniques for writing explicit parallel code are long 
vector ISA and simultaneous multi-threading. Each of 
these techniques has strengths and weaknesses, 
depending on the type of code the techniques are 
intended to run.   

Simultaneous multi-threading is a powerful technique 
for hiding memory latency in applications with poor 
locality, eliminating the need for more expensive out-
of-order techniques. But it requires more area, so it 
should be used only to the point where it effectively 
hides memory latency.   Future architectures will rely 
on longer SIMD vectors (e.g. 4, 8, 16 elements per 
register) to improve power efficiency, but generally 
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there is a “harder” limit on the effectiveness of 
increasing vector length: Increasing vector length 
creates inefficiencies for algorithms that inherently 
use shorter or unaligned vectors. Given the types of 
code that we believe will be important in the future 
(graphics rendering, media, etc, which utilize streaming 
memory), architectures will have to strike the right 
balance between these techniques.  For example, we 
expect it is appropriate to scale the number of cores at 
about 2x per process generation (tracking Moore’s 
Law), but the SIMD width will scale much more slowly. 

These issues present the software developers with 
several architectural variables to which they must 
adapt.  

1.2 Programming Tera-scale 
Architectures 
Independent software vendors (ISVs) are excited by 
the peak throughput benefits of future Intel 
architectures, but at the same time they are 
concerned about the burden on the application 
developer to write explicitly parallel code. Using 
threads and vector intrinsics gives maximum flexibility 
to the programmer, but at great expense of 
programmer productivity, application portability and 
scalability.   Moreover, evolving vector lengths and 
core counts are going to create performance scaling 
problems for software developers.  Backwards 
compatibility in CPUs guarantees functional 
correctness but does not address performance scaling, 
which may regress as architecture evolves!  

GPU hardware and software vendors have taken steps 
toward solving this problem. Languages for GPUs 
relieve the programmer of having to think about 
threads or SIMD width by supporting, for example, the 
DirectX programming model.  In this model, a single 
data element (pixel) of a collection (display surface) is 
processed independent of neighboring data elements 
(pixels). This simpler model of computation reflects the 
underlying GPU architecture and is often called 
streaming data parallelism.  

GPU programming models are constrained in such a 
way that the compiler and runtime can reason about 
the application and extract the parallelism 
automatically. Examples of this include DirectX, CUDA, 
and Cg. If the programmer can reformulate the 
application to work under GPU constraints, the 

compiler/runtime can do the rest automatically.  
However, reformulating the application to fit these 
constraints often requires considerable programmer 
effort, and can result in significantly less efficient 
software algorithms.   For example, it is difficult to 
operate efficiently on linked lists or compressed data 
structures, so applications that would naturally like to 
use these types of algorithms must be reformulated to 
use algorithms more consistent with GPGPU models. 

Intel architecture is more general purpose than GPU 
and other coprocessor architecture.  Unlike GPUs, Intel 
architectures have 

1. Inter-core communication through substantial, 
coherent cache hierarchies 

2. Efficient, low latency thread synchronizations 
across the entire processor array 

3. Narrower effective SIMD width   

More general purpose hardware allows Intel 
architecture to run more general purpose software 
algorithms (for example, algorithms that employ linked 
lists).  So while Intel architecture can run applications 
written to use a GPU programming model, these 
applications are more constrained than necessary.  
That is, it makes sense to define a constrained 
programming model so the compiler and runtime can 
extract the parallelism. However, a model that is less 
constrained than most GPGPU models is highly 
desirable, so that applications do not have to be 
reformulated as substantially.  At a high level, this is 
the goal of Ct: to define a constrained programming 
model that efficiently and portably targets highly 
parallel general purpose cores, such as Intel multi-core 
and tera-scale systems.  To ease incremental adoption, 
Ct seamlessly extends C/C++ and can be used with 
legacy threading APIs. 

1.3 Ct: Nested Data Parallelism 
It often is convenient for the programmer to think of 
the computing resources provided by a multi-core CPU 
as an engine for data-parallel computation. The basic 
idea is that applications exhibit a lot of parallelism 
through operations over collections of data. 
Abstracting the underlying hardware threads, cores, 
and vector ISA as computation over collections of data 
greatly simplifies the task of expressing parallelism in 
an architecture-independent fashion.  Ct provides a 
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nested data-parallel abstraction that is initially familiar 
to most programmers, but which provides extended 
functionality to address irregular algorithms. 

Irregular algorithms are broadly defined as those that : 

• require dynamic data types, such as sparse 
matrices, linked lists, or trees; 

• have high likelihood of contended 
synchronization, such as reductions and prefix-
sums in which elements of a collection are 
“summed” using a combining operator; and/or 

• have moderate control flow, such as well-
structured conditional nests, nested loops, and 
recursive functions. 

Intel multi-core architecture (including tera-scale 
architecture) addresses these requirements 
efficiently, whereas GPUs generally do not. Ct aims to 
address the software stack by providing a data parallel 
model that supports irregular algorithms, whereas 
GPGPU programming models do not. An important 
benefit of Ct for the software developer is that it 
scales forward with increasing core count and vector 
ISA width. For example, a Ct application will scale from 

dual- and quad-core systems to tera-scale systems.   

1.3.1 The Importance of 
Determinism 
Like many of its flat data-parallel brethren, Ct is 
deterministic. Determinism guarantees that program 
behavior is identical, on one core or many cores.  This 
essentially eliminates an entire class of programmer 
errors—namely, data races. Ct also provides a 
predictable high-level programming model. As a result, 
the average programmer can use Ct operators with a 
basic understanding of the cost and scalability of their 
use.  This is difficult to achieve for unconstrained 
threading models. 

The Ct programming model accomplishes the difficult 
task of combining powerful, high-performance data 
parallel constructs with completely deterministic 
behavior.  This is essential for tera-scale programming 
models, to enable the development of programs that 
are both powerful and easy to write.   

Figure 1-1  The Ct API in the software development 
process. 
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2.0 Sparse 
Matrices: An 
Example 
2.1 The Challenge of Sparse 
Matrices 
Many useful data structures have unusual (or irregular) 
organization because of the efficiency of such 
representations.  For example, dense (or fully 
populated) matrices are required when the problem 
formulation dictates that most elements of the matrix 
are significant.  However, often the particular algebraic 
formulation of a problem sparsely populates elements 
in the matrix with meaningful values.  One example is 
large scale physics simulation. In these simulations, the 
logical size of a dense matrix might be hundreds of 
megabytes. By contrast, a sparse matrix 
representation that only stores non-zero matrix 
elements might only hold one megabyte of data.  This 
degree of data compression is essential in desktops, 
mobile, and console gaming platforms. 

Dense representations simplify the parallelization of 
such code. Walking through the elements in a dense 
representation is often performed in regular patterns, 
such as column or row order.  This means that the 
control paths and data access patterns are very 
predictable (one feature of regularity in an algorithm). 
For example, the code in Example 2-1 can be used to 
walk over a dense matrix A in row order. 

Example  2-1:  Dense matrix traversal 

 for (row = 0; row < row_num; row++) { 

 for (col = 0; col < col_num; col++) { 

 …touch elements of A[row][col]… 

 } 

 } 

Generally there are two factors that make this a 
relatively manageable exercise in parallelization: 

1. Depending on the algorithm being 
implemented, there may be parallelism in one 
or both of the enclosing loops. For large 

matrices, these loops provide sufficient 
parallelism that can be trivially decomposed 
into parallel sub-loops.   

2. The data accessed within one or both of these 
loops is distinct (or independent, in compiler 
terms).  

Sparse matrices are much more difficult to parallelize.  
There are many forms of sparse matrix. We will 
address two forms that pose unique challenges for 
programmers: Compressed Sparse Column (CSC) and 
Compressed Sparse Row (CSR) matrices.  

The basic idea of CSC and CSR is to store only non-zero 
elements of the matrix, in column or row order, 
respectively. With each non-zero element, the 
programmer will also store the row or column index.     

Consider the sparse matrix in Example 2-2. In CSR and 
CSC formats, the matrix would be stored as three 
vectors, the nonzero values, the row or column 
pointers, and the column and row indices, respectively. 
Schemas for traversing the two representations are 
shown in the Example.    

Example  2-2:  Sparse matrix representation and 
traversal 

 A = [[0 1 0 0 0] 

  [2 0 3 4 0] 

  [0 5 0 0 6] 

  [0 7 0 0 8] 

  [0 0 9 0 0]] 

 

 The CSR Representation of A: 

 Values  = [1 2 3 4 5 6 7 8 9] 

 ColIdx = [1 0 2 3 1 4 1 4 2] 

 RowP  = [0 1 4 6 8 9] 

 for (row = 0; row < row_num; row++) { 

 for (elt = RowP[row]; elt < RowP[row+1]; 
elt++) { 

  int col = ColIdx[elt];  

  …touch elements of A[row][col]… 

 } 

 } 

 

 The CSC Representation of A: 
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 Values  = [2 1 5 7 3 9 4 6 8] 

 RowIdx = [2 1 3 4 2 5 2 3 4] 

 ColP  = [0 1 4 5 6 7 9] 

 

 for (col = 0; col < col_num; col++) { 

 for (elt = ColP[col]; elt < ColP[col+1]; 
elt++) { 

  int row = RowIdx[elt];  

  …touch elements of A[row][col]… 

 } 

 } 

Two factors make this code difficult to parallelize 
efficiently.  

1. The inner loop in both cases has a varying and 
unpredictable trip count.  For example, the trip 
count might be determined by where a game 
player is looking in a particular scene in a game. 
This makes it difficult to predict the workload 
for each inner loop invocation. Thus it is 
difficult to balance the workload among 
threads. 

2. There is an indirection through the column or 
row index array that will create aliases and 
dependences in most computations that might 
use sparse matrices.  

Consider sparse matrix vector product (SMVP), a 
common kernel in gaming and RMS applications.  In 
SMVP, a sparse matrix is multiplied by a vector.  Like 
dense matrix vector multiplication, computing a sparse 
matrix vector product requires taking the inner 
product of each row of the matrix with the vector.  For 
the CSR sparse matrix, the loop traverses the data in 
row order, similar to the dense computation. For the 
CSC sparse matrix, it is simpler to traverse the data in 
column order, updating the result vector when non-
zero row elements occur. 

It is worth observing some of the broader patterns of 
these computations in order to comprehend the 
implications for parallelism: 

• In CSR, the expression vec[ColIdx[elt]] denotes 
that vec is permuted by the contents of ColIdx.  

This looks similar to a gather operation in 
GPUs.  

• In CSC, the expression vec[col] implied that 
each element of vec must be replicated 
(ColP[col+1]-ColP[col]) times. This can be 
viewed as a special kind of gather operation, 
but more complex than those that are typically 
supported in GPU hardware. 

• In CSR, the left-hand side expression 
“product[row]+= …” denotes that we are 
summing (or reducing) all the elements 
computed in the right-hand side of that 
expression for the inner loop.  

• In CSC, the expression “product[RowIdx[elt]] 
+=…” implies that we are performing what is 
called a combining-send, or alternatively a 
multi-reduction or combining-scatter.  

Note that the last two observations above are similar, 
except that the data is effectively pre-sorted by 
destination for the CSR form.  That is, the inner 
product to compute an element of the result for CSR 
occurs entirely within one invocation of the inner loop, 
whereas it takes place across many invocations of the 
inner loop for CSC. 

We can now create a conceptual parallel pattern for 
performing sparse matrix computations: First, permute 
the vector, then perform an element-wise product, 
and finally, perform some flavor of reduction.  

2.2 Unique Challenges for GPUs 
Special purpose processors often lack many of the 
mechanisms required for efficient implementation of 
sparse matrix kernels. For example, GPUs lack the 
basic facilities required to support efficient, low-
latency cross-chip inter-thread communication and 
synchronization. Cache coherence provides a vehicle 
for core-to-core communication, while high-
performance interconnects provide low latency. 

Inter-thread synchronization and communication of 
partially computed results is essential to support 
collective communication primitives, such as reductions 
and prefix-sums. For example, to reduce the values of 
an array, the standard approach is to use an algorithm 
to  partition the elements of the array among threads, 
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reduce the values locally, and then combine the partial 
results from each thread.  To combine the partial 
results from each thread, the threads must be able to 
communicate with each other.   

For a general purpose multi-core architecture, 
synchronization and communication between threads 
requires the use of coherent memory locations and 
locks; no external memory bandwidth is consumed. For 
a GPU, on the other hand, the algorithm is quite costly 
in terms of memory bandwidth. The only mechanism 
for inter-thread synchronization and communication is 
through access to external memory. The GPU 
reduction algorithm must then repeatedly write and 
then read partial results to and from external memory.  
For an array of length n, the algorithm uses a 
progressive combining scheme whereby adjacent pairs 
of elements are combined with the results written out 
to memory in each phase. The first phase reduces to 
n/2 elements, the second to n/4 elements, and so on.  
In all, this requires O(log n) passes through memory, 
consuming O(n*log n) memory bandwidth.    

Sparse-matrix operations require more complex 
flavors of collective communication primitives, such as 
segmented reductions, multi-reduce, and prefix-sum.  
Operations such as these are significantly more 
complex on special purpose processors, requiring 
additional passes through memory. This is a principal 
reason why such primitives historically have been 
restricted or unavailable on GPGPU programming 

models.   

on GPGPU programming models.   

Figure  2-1 Ct-based physics simulation (requires sparse 
matrices): “Golden Pigs”  

2.3 Sparse Matrices with Ct 
Ct introduces a new (template-style) polymorphic type, 
called a TVEC.  TVECs are write-once vectors that 
reside in a vector space segregated from native C/C++ 
types. For example, a vector of non-zeros for the 
stiffness matrix in a cloth simulation may be declared 
as: 

TVEC<F64> nonzeros;1 

The column indices for each nonzero and row sizes for 
the sparse matrix (assuming a Compressed Sparse 
Column representation) can be represented similarly: 

TVEC<I32> RowIdx; 

TVEC<I32> ColP; 

The types of primitives used for this particular sparse 
matrix-vector product fall into three of the Ct operator 
categories: 

• Element-wise operators that support simple 
unary, binary and n-ary operators, such as 
addition, multiplication, etc.  For example, the 
following code performs an element-wise 
multiplication of two vectors: 
TVEC<F64> product = multiply(nonzeros, 
expv);   
…or, using operator overloading:  
TVEC<F64> product = nonzeros*expv; 

• Collective communication operations, such as 
reduction, prefix-sum, or combining-send.  
Multi-core CPUs support these very efficiently, 
though many accelerators (including GPUs) 
support only a few of these operations 
efficiently.  For example, to perform an 
indexed reduction, or a combining-send, of a 
vector, we use a multi-reduce primitive. In Ct, 
this primitive is invoked implicitly via 
reductions for indexed vector shapes.  We 
apply the vector shape and perform the 
reduction: 
product = 
product.applyNesting(RowIdx,ctIndex); 
TVEC<F64> innerproduct = 
addReduce(product,RowIdx);  

                                                 
1 For cloth simulation, we are likely to use a block sparse 
symmetric matrix, but we elide these details for simplicity of 
presentation. 
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• Permutation operations which allow both 
structured and unstructured reordering and 
replication of data. For example, the following 
code creates a new vector expv comprised of a 
variable number of copies (denoted by each 
element of cols) of each element of v: 
TVEC<F64> expv = distribute(v,ColP);  

Combining the code above, we can write a sparse 
matrix-vector product, as illustrated in Example 2-3. 

Example  2-3:  Sparse matrix vector product with Ct 

 TVEC<F64> sparseMatrixVectorProducSC( 

  TVEC<F64> Values,  

  TVEC<I32> RowIdx,  

  TVEC<I32> ColP,  

  TVEC<F64> v) { 

    TVEC<F64> expv = distribute(v,ColP); 

    TVEC<F64> product = Values*expv;  

 product = product.applyNesting(RowIdx, 
ctIndex) ; 

    TVEC<F64> result = product.addReduce(); 

    return result; 

} 
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3.0 The Ct API 
3.1 Ct Vectors: TVECs 
The TVEC, which is the basic type of vector in the Ct 
API, is a managed parallel vector. TVECs are allocated 
and managed in a segregated memory pool, to ensure 
the safety of parallel operation on the vectors. Normal 
C and C++ data structures are generally unsafe 
because of unrestricted effects and use of aliases. 

Data must be explicitly copied into and out of vector 
space.  The only operators allowed on TVECs are Ct 
operators, which are functionally pure. It is important 
to note that TVECs are logically passed around by 
value. This property guarantees the safety of 
parallelism and the aggressive optimizations that make 
parallelism efficient. 

The base types of TVECs are drawn from a set of 
typical pre-defined scalar types. A TVEC variable may 
be declared without an instantiated base type, but the 
compiler must be able to infer the type. Examples of 
base types include I32 (32-bit integer), I64 (64-bit 
integer), F32 (Float), F64 (Double), and Bool (Boolean). 
Ct also includes a C struct-like base type for user-
defined base types (such as color pixels) and fixed size 
arrays.  

The internal representation of TVECs is opaque to the 
programmer and may include meta-data that is useful 
to the runtime. A TVEC may be declared as follows:  

TVEC<I8> Red; 

TVEC<F32> Xes; 

Values in native C/C++ memory space are explicitly 
copied into and out of Ct managed vector space using 
copyin and copyout operators: 

Red = copyin(CRed, Height*Width, I8);  // 
Red  CRed 

copyout((void*)CXes,Xes);  // CXes  Xes 

There are several flavors of each of these operators 
for different data types and shapes.  

3.2 Ct Operators 
Ct operators are logically free of side effects, from the 
programmer’s perspective. As such, each Ct operator 
logically returns a new TVEC (note that the C++ 

operator overloading is used to write “cleaner” or more 
readable code): 

ScaledRed = Red*0.5; // ScaledRed  a new 
TVEC  

The API encompasses a broad range of rich 
functionality.  Within each class of facility, element-
wise, collective communication, and permutation 
operators, there are many subclasses of operations, 
each defined over all TVEC types.  Each Ct operator 
generally has the form ctOpClass, where Op is the 
particular flavor of operator and Class is the operator 
class.  For example, addReduce denotes the reduction 
operator using addition. 

3.2.1 Element-wise Operators 
Element-wise operators are typically referred to as 
“embarrassingly” parallel, requiring no interactions 
between the computations on each vector element. In 
functional languages, these can be implemented with 
map operations, while in OpenMP they can be 
implemented as parallel for loops.  An example of an 
element-wise operation is the addition of two vectors: 

TVEC<F32> A = B + C; // “+” resolves to add 

Note that this code generically performs an element-
wise addition of two vectors, regardless of the “shape” 
of the two vectors (i.e., their length, dimensionality, 
irregularity). 

3.2.2 Collective Communication 
Operators 
Collective communication operators tend to provide 
distilled computations over entire vectors and are 
highly coordinated.  While they have a high degree of 
interference, they can be structured so that there is 
parallelism in colliding writes, and they typically scale 
in performance linearly with processor count, with 
little or no hardware support. These operators are 
called collective communication operators in MPI and 
reductions in OpenMP, though neither provides the 
rich set of operations that Ct does.  In functional 
languages, these are termed fold operations or list 
homomorphisms. 

There are two kinds of collective communication 
primitives in general, though there are several 
variations of each depending on the type of vector on 
which operations are being performed. Broadly, the 
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two fundamental types of operations are reductions 
and prefix-sums (also called scans).  Reductions apply 
an operator over an entire vector to compute a 
distilled value (or values, depending on the type of 
vector). Prefix-sums perform a similar operation, but 
return a partial result for each vector element.  For 
example, a addReduce sums over all the elements of a 
vector if the vector is flat. More concretely, 
addReduce([1 0 2 -1 4]) yields 6. Likewise, 
addPrefix([1 0 2 -1 4]) yields [0 1 1 3 
2].   

If the vector is nested, the behavior will be as 
described in Section 3.2.4.  

3.2.3 Permutation 
A permutation operator in Ct is any operator that 
requires moving data from its original position to a 
different position. An example of this is a gather 
operation, which uses an index array to collect values 
of a vector in a particular order.  Permutations run the 
gamut, from arbitrary permutations with arbitrary 
collisions (occurring when two values want to reside in 
the same location) to well-structured and predictable 
permutations where no collisions can occur.  For 
collisions, it is recommended that programmers make 
use of the collective communication operators.  An 
example of a well-structured (and efficient) 
permutation operator is pack, which uses a flag vector 
to select values from a vector in the source vector 
order. Hardware can typically support this operator 
fairly efficiently.   

3.2.4 Nested Vectors 
Ct’s support for nested vectors is a generalization that 
allows a greater degree of flexibility than is otherwise 
found in most data parallel models. TVECs may be flat 
vectors or regular multi-dimensional vectors. They also 
may be nested vectors of varying length, which allows 
for very expressive coding of irregular algorithms, 
such as other variants of sparse matrix 
representations, or byproducts of divide-and-conquer 
algorithms.  

The vector value [a b c d e f] is a flat (or 1-
dimensional) vector.  The vector [[a b][c d e 
f]] holds the same element values, but is a vector of 

two vectors of lengths 2 and 4.  The second vector 
might represent a partitioning of the first vector’s data 
based on certain attributes (such as a threshold value). 

Ct operators work on nested TVECs seamlessly. The 
behavior of element-wise operators is the same for 
nested TVECs as  for flat vectors. For example, 
add([[a b][c d e f]], [[g h][i j k 
l]]) yields [[a+g b+h][c+i d+j e+k f+l]].  
The power of nested versus flat TVECs is primarily 
differentiated through the behavior of collective 
communication primitives.   

Collective communication primitives applied to nested 
TVECs “respect the boundaries” of the subvectors by 
applying the operator to each subvector 
independently. For example, addReduce([a b c d 
e f]) yields the singleton vector [a+b+c+d+e+f], 
while addReduce([[a b][c d e f]) yields the 
two- element vector [a+b c+d+e+f].  

The internal representation of a nested vector is 
opaque to the programmer. The nesting structure is 
accessible through several facility routines, but these 
routines generally should not be necessary. Other 
vector types supported by Ct are indexed vectors, 
where there are indices associated with each value. 

3.3 Implementing Ct 
Ct provides several levels of abstraction below the 
high-level API presented in this paper, to accommodate 
varying degrees of programmer expertise. For 
instance, for more sophisticated programmers, lower 
levels of abstraction expose task granularity and 
machine-width independent vector ISA intrinsics and 
optimizations.  

Earlier generations of data parallel programming 
models and languages benefited from extraordinarily 
large data sets and highly parallel (high bandwidth) 
memory systems.  Because of this, the optimization 
pressure on task granularity was not as critical as 
simply identifying parallel regions of code and basic 
operator implementations.  For tera-scale architecture, 
such implementations would yield code that is memory 
bandwidth limited and overly burdened with threading 
overhead.  The computational power of tera-scale 
systems must be coupled with intelligent optimization 
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that maximizes the amount of calculation per memory 
operation. 

The top priority of the Ct compiler and runtime is to 
minimize threading overhead and make effective use 
of memory bandwidth.  To accomplish this, Ct utilizes a 
fine-grained, data-flow threading model.  Essentially, 
the Ct computation is decomposed into a task 
dependence graph that is optimized by the compiler by 
merging similar tasks into coarser-grained tasks.   

The task dependence graph consists of data parallel 
sub-primitives.  These sub-primitives are the building 
blocks of data parallel computing, comprising local 
phases of computation that entail no inter-processor 
synchronization and global phases that perform 
structured write combining and synchronization. 
Similar sub-primitives usually can be fused together 
into coarser grained tasks. This simultaneously 
increases task granularity and locality of data access, 
minimizing off-chip memory accesses. 

Another distinction of Ct’s approach is that threading 
decisions are made dynamically.  Each task is 
represented by a spawn point, but the precise number 
of sub-tasks created is dependent on both the number 
of cores available and the size of the underlying vector 
being processed.   The Ct runtime is highly adaptive to 
varying data sizes and core loads. 

 

Figure  3-1 How Ct is compiled. 

product = A*expv

SMVP = ctAddReduce(product);

Non-fused Fused Threaded

…

“Static” or Compile-Time Dynamic

Local Multiply

Local AddReduce

Global AddReduce

Multiply

AddReduce
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4.0 Concluding 
Remarks: The 
Future of Ct 
Ct implements many more features than described in 
this white paper, and it enables several additional 
key features that will be implemented in the coming 
months.  One important future feature is 
deterministic task parallelism.  As previously 
observed, determinism is a critical property for 
programmer productivity, guaranteeing that program 
execution is functionally predictable.  Through 
determinism, data races are entirely eliminated as a 
class of programmer errors.  

The underlying threading model used by Ct supports 
a fine-grained, adaptive dependent tasking model.  
While this is used to implement the higher-level data 
parallel constructs, revealing implicit task parallelism, 
Ct will include constructs for deterministic task 
parallelism. 

Ct supports a high-level performance model that can 
be used by the average programmer to guide 
algorithmic choice.  For example, element-wise 
operators generally scale linearly in performance on 
Intel multi-core and tera-scale architecture for large 
vectors.  If the operations are used for small vectors, 
the underlying runtime knows not to use as many 
cores for the computation, mitigating threading 
overhead.  Similarly, collective communication 
operators generally scale linearly with core count, 
but have an additional cost associated with 
synchronization.  The synchronization patterns vary 
by architecture, but are generally asymptotic in core 
count, not in vector size. So, for large vectors, the 
linear scaling component tends to dominate. 

Ct provides a virtual laboratory in which to 
experiment with more exotic tera-scale programming 
features, such as lossy, real-time, and adaptive 
computation. Some of these features are used on an 
ad hoc basis in many high- performance algorithms 
and applications, notably those with real-time 

constraints, such as media and gaming.  A key 
objective of Ct is to create a framework in which 
such performance breakthroughs (sometimes 
pejoratively and unfairly misunderstood as hacks) are 
supported systematically.  
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6.0 Appendix: Ct Coding Examples 
6.1 Image Processing 
Image processing generally is fairly straightforward in data parallel programming models, even those that are flat. 
There is a slight difference in coding style between the “streaming” style of local kernel specification and the 
global data parallel approach.  In the kernel style, only the local computation is specified and is assumed to be 
applied at every pixel (similar to the graphics model).  In the data parallel style, the entire image is operated on at 
once, though this approach can be relaxed through the use of Ct’s generic operators (e.g., genBinary).  However, 
the code generally is not substantially more or less compact with either approach, as illustrated in the color 
conversion code below. 

TVEC<F32> colorConvert(TVEC<F32> rchannel, TVEC<F32> gchannel,  

            TVEC<F32> bchannel, TVEC<F32> achannel,  

            F32 a0, F32 a1, F32 a2, F32 a3) 

{  

 return (rchannel * a0 + gchannel * a1 + bchannel * a2 + achannel * a3); 

} 

Convolutions are somewhat more substantial and broadly useful in both image processing and more general signal 
processing domains.  Because convolutions require a neighborhood of pixels to compute the filter, the source 
image is “shifted” about in order to place the required pixel at the computed pixel.  These shifts are logically 
creating new values, though in this case, the compiler and optimizer trivially optimize away any copying and simply 
refer to a single source image. Following is an example of convolution code: 

TVEC<F32> Convolve2D3x3(TVEC<F32> pixels, I32 channels, TVEC<F32> kernel) { 

TVEC<F32> respixels; 

 

 // directions[m][n] is a constant TVEC of size 2 with values {m-1, n-1} 

  respixels += shiftPermute(pixels, directions[0][0]) * kernel[0][0]; 

  respixels += shiftPermute(psixels, directions[0][1]) * kernel[0][1]; 

  respixels += shiftPermute(pixels, directions[0][2]) * kernel[0][2]; 

  respixels += shiftPermute(pixels, directions[1][0]) * kernel[1][0]; 

  respixels += pixels * kernel[1][1]; 

  respixels += shiftPermute(pixels, directions[1][2]) * kernel[1][2]; 

  respixels += shiftPermute(pixels, directions[2][0]) * kernel[2][0]; 

  respixels += shiftPermute(pixels, directions[2][1]) * kernel[2][1]; 

  respixels += shiftPermute(pixels, directions[2][2]) * kernel[2][2]; 

 

  return respixels 

} 
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6.2 Sparse Linear Solvers 
Sparse linear solvers are quite common in high-performance applications, such as physics simulations and 
many scientific and machine learning applications. One technique that is commonly used is the 
preconditioned conjugate gradient method, illustrated in the Ct code below, which produces a cloth 
simulation.  Note that the key kernel used is a CSR sparse matrix vector product. 

 

Figure  6-1 Ct-based Cloth simulation on Core 2, Core 2 Duo, Core 2 Quad 

First, we define a C structure to contain the linear system. 

typedef struct { 

    CTSparseMatrix    A; 

    TVEC<F64>     b; 

    Float       e;          // Epsilon 

     

    CTSparseMatrix   pM;       //Preconditioning matrix. 

    CTSparseMatrix   pMinv;    //Inverse preconditioning matrix. 

} CTLinearSystem; 

 

The solver uses the sparse matrix vector product kernel (called smvMul below).  
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TVEC<F64> pCG(CTLinearSystem &lsys, TVEC<F64> x0){ 

    int i = 0; 

    F64 alpha, delta0=0, delta1; 

    TVEC<F64> v_x  = x0; 

    TVEC<F64> v_r  = lsys.b - smvMul(lsys.A, v_x); 

    TVEC<F64> v_pr = smvMul(lsys.pMinv, v_r); 

    delta1 = addReduce(v_r * v_pr); 

    while( (delta > delta0 * lsys.e) && (i < IterationMax)){ 

        TVEC<F64> v_q = smvMul(lsys.A, v_pr); 

        alpha   = addReduce((v_pr * v_q)); 

        alpha   = delta/alpha; 

        v_x    = v_x + (v_pr * alpha); 

        v_r    = v_r - (v_q * alpha);         

        TVEC<F64> v_s  = smvMul(lsys.pMinv, v_r); 

        delta0      = delta1; 

        delta1     = addReduce(v_r * v_s); 

        v_pr        = v_s + (v_pr * (delta1/delta0)); 

        i++; 

    } 

    return v_x; 

} 

This cloth simulation requires a bit more code to integrate forces in the system and detect collisions.  Collision 
detection, in particular, is extremely challenging to parallelize for flat data parallel systems, but simplified greatly 
through nested data parallelism. 

6.3 Sorting 
While sorting is typically used as an illustrative algorithm, the kernel illustrated below forms part of the 
implementation for quick KD-tree construction in Ct.  The quicksort is simpler to use to illustrate the tradeoffs in 
implementation. 

The problem with recursive sorting (and divide-and-conquer algorithms, in general) is that the (superficial) data 
parallelism is maximized at the root of the algorithm’s call graph and minimized at the leaves.  Similarly, task 
parallelism is (superficially) minimized at the root and maximized at the leaves. Taking the task versus data 
parallelism view of quicksort, it appears to be difficult to fit into a single programming model.   The approach is 
illustrated in the code and Quicksort graphic below. 

TVEC<F64> ctQsort(TVEC<F64> Keys) { 

  TVEC<F64> pivot, lowerKeys, pivotKeys, upperKeys; 

  TVEC<Bool> pivotFlags; 

  I32 pivot; 
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  if (length(Keys) == 0) 

    return Keys 

 

    pivot = extract(Keys, 0)  

 

    pivotFlags = lessThan(Keys, Pivot); 

    lowerKeys = pack(Keys, pivotFlags); 

    pivotFlags = equal(Keys, Pivot); 

    pivotKeys = pack(Keys, pivotFlags); 

    pivotFlags = greaterThan(Keys, Pivot); 

    UpperKeys = pack(Keys, pivotFlags); 

  

    return cat(ctQsort(lowerKeys),  

  cat(pivotKeys,ctQsort(upperKeys));  

} 

 

Figure  6-2 Decreasing data parallelism and increasing task parallelism in Quicksort. 

Nested data parallelism unifies data parallelism and divide-and-conquer task parallelism.  Sub-tasks are not created 
as parallel threads, but rather are manifest as partitions in a nested vector. We use partition to create these sub-
partitions, and then recurse on the entire vector.  The power of nested data parallelism for this type of irregular 
control flow is clearly illustrated through the resulting unification of data and task parallelism, as shown below:  

TVEC<F64> ctQsort(TVEC<F64> Keys, TVEC<Bool> Mask) { 

  TVEC<F64> pivot, partitionedKeys,  

  TVEC<Bool> newMask; 

  TVEC<I32> pivotPartitions 

  if (equals(orReduce(orReduce(Mask)), 0)) // since mask is nested, have to do this twice 

    return flatten(Keys); 
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    pivot = extract(Keys, ctNewVector(ctNumPartitions(Keys),0,I32));  

 

    pivotPartitions = compare(Keys, Pivot, Mask); 

    partitionedKeys = partition(Keys, pivotPartitions); 

    partitionedMask = partition((Mask && pivotPartitions), pivotPartitions); 

 

    return ctQsort(partitionedKeys, partitionedMask);  

} 

 

 

Figure  6-3 Unifying Quicksort’s data and task parallelism in Ct via nested data parallelism. 
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7.0 Appendix: Typical Ct Operators 
Table  7-1 A selection of typical Ct Operators 

Facilities 
Managed Vector/Native Space Copying 
copyIn, copyin2D, copyin3D, copyout 
Vector Generators 
cat, repeat, replicate, replace, index, copy, newVector  
Vector Utilities 
extract, copy, length 
Nested Vectors 
newNestedVector, applyNesting, copyNesting, setRegular2DNesting, setRegular3DNesting, 
getNesting, getNestAsVec 
 

Element-wise 
Vector-Vector 
add, sub, mul, div, equal, min, max, mod, lsh, rsh, greater, less, geg, leq, neq, ior, and, 
xor, power, divTan, select, map 
Vector-Scalar (also, Scalar-Vector variants exist) 
addVectorScalar, subVectorScalar, subScalarVector, mulVectorScalar, divVectorScalar, 
divScalarVector, equalVectorScalar, minVectorScalar, maxVectorScalar, modVectorScalar, 
lshVectorScalar, rshVectorScalar, greaterVectorScalar, lessVectorScalar, geqVectorScalar, 
leqVectorScalar, neqVectorScalar, iorVectorScalar, andVectorScalar, xorVectorScalar, 
genVectorScalar, map 
Unary 
abs, not, log, exp, sqrt, rsqrt, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, floor, 
ceiling, round, map 
 

Collective Communication 
Reduction 
addReduce, mulReduce, minReduce, maxReduce, andReduce, iorReduce, xorReduce, reduce 
Scan/Prefix-Sum 
addScan, mulScan, minScan, maxScan, andScan, iorScan, xorScan, scan 

 
Permutation 
Pack/Unpack 
pack, unpack 
Scatter/Gather 
scatter, gather 
Shift/Rotate 
leftShiftPermute, rightShiftPermute, leftRotatePermute, rightRotatePermute, 
shiftDefaultPermute, rotateDefaultPermute 
Partition 
partition, unpartition 
Miscellaneous 
defaultPermute, omegaPermute, butterflyPermute, distribute 
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