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Riemann Zeta function

The Riemann zeta function

ζ(s) =
∞∑

n=1

n−s

=
∏
p

(
1− p−s

)−1
, Re(s) > 1

has meromorphic continuation to C with a simple pole at s = 1.

It satisfies the functional equation

Λ(s) = π−s/2Γ(s/2)ζ(s) = Λ(1− s),

where

Γ(s) =

∫ ∞
0

ts−1e−t dt.
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Zeroes of ζ(s)

The Prime Number Theorem

π(x) = #{p ≤ x} ∼ x

log x
∼ Li(x) =

∫ x

2

dt

log t

can be reduced to the statement that ζ(s) 6= 0 for Re(s) = 1.

More explicitely,

π(x) = Li(x) + O
(
x exp(−

√
log x)

)
corresponds to the zero-free region σ ≥ 1− c/ log t for s = σ + it.
The Riemann Hypothesis states that for 0 < Re(s) < 1, ζ(s) = 0
implies that Re(s) = 1/2. It is equivalent to

π(x) = Li(x) + O
(
x1/2 log x

)
.
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Number of zeroes in the critical strip

The Riemann-Von Mangoldt formula states that

N(T ) = {ρ = σ + iγ : ζ(ρ) = 0, 0 ≤ σ ≤ 1, 0 < γ < T}

=
T

2π
log

T

2π
− T

2π
+ O(log T ) ∼ T log T

2π
.

The first few zeroes are:
ρ1 = 1/2 + 14.134725i , ρ2 = 1/2 + 21.022040i ,
ρ3 = 1/2 + 25.010858i , ρ2 = 1/2 + 21.022040i ,
ρ5 = 1/2 + 32.935062i , ρ6 = 1/2 + 37.586178i .
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Distribution of the zeroes in the critical strip

How are the (imaginary parts of the) zeroes distributed? For
example, do they look like T log T/2π random points on an
interval of length T?

How many zeroes ρ = σ + iγ are such that are such that

2πα

log T
< γ1 − γ2 <

2πβ

log T
⇐⇒ α <

γ1 log T

2π
− γ2 log T

2π
< β?

We have normalised the zeroes such that there are now ∼ T
zeroes on an interval of length T .
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Conjecture (Montgomery’s Pair Correlation conjecture, 1974)

1

T

∑
0<γ̂1,γ̂2≤T
α<γ̂1−γ̂2<β

1 ∼
∫ β

α
1−

(
sinπu

πu

)2

du

Theorem (Montgomery, 1974)

Let φ be a test function such that the support of the Fourier
transform φ̂(u) is contained in (−1, 1). Then

1

T

∑
0<γ̂1,γ̂2≤T

φ(γ̂1 − γ̂2) ∼
∫ ∞
−∞

φ(u)

(
1−

(
sinπu

πu

)2
)

du

Dyson noticed that this gives the pair correlation between
eigenvalues of large random unitary matrices.
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Random Unitary Matrices

Let U(N) be the set of N × N unitary matrices in MN(C), i.e.

A∗A = A A∗ = IN .

Let A ∈ U(N), and let λk(A) = e iθk (A) be the eigenvalues, with
0 ≤ θ1(A) ≤ θ2(A) · · · ≤ θN(A) ≤ 2π. Let

R(A)[α, β] =
1

N
#

{
j 6= k : α ≤ N

2π
(θj − θk) ≤ β

}
.

Again, we have normalised the eigenangles in such a way that
there are N angles on an interval of length N.
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Random Unitary Matrices

Let

R(A)[α, β] =
1

N
#

{
j 6= k : α ≤ N

2π
(θj − θk) ≤ β

}
.

Then, with the appropriate measure on U(N) (which is the
translation invariant Haar measure)

lim
N→∞

∫
U(N)

R(A)[α, β] dA =

∫ β

α
1−

(
sinπu

πu

)2

du.
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GUE Conjecture

• Montgomery’s Pair Correlation conjecture does not mean that
the zeroes are distributed as the eigenvalues of large
Hermitian matrix, but that the pair correlations are the same
for the two sets.

• But Montgomery, and others, went on to conjecture that
perhaps all the statistics, not just the pair correlation statistic,
would match up for zeta-zeros and eigenvalues of random
matrices. This conjecture is called the GUE conjecture.

• In the 1980s, Odlyzko began an intensive numerical study of
the statistics of the zeros of ζ(s). He computed millions of
zeros at heights around 1020 and spectacularly confirmed the
GUE conjecture, which is also called the Montgomery-Odlyzko
law.
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The work of Katz and Sarnak

• For zeta functions of curves over finite fields, the zeroes are
the reciprocal of eigenvalues of Frobenius acting on the first
cohomology (with `-adic coefficients) of the curve. This
additional structure is used for example by Deligne in his proof
of the Riemann Hypothesis for zeta functions of varieties over
finite fields.

• Katz and Sarnak used this spectral interpretation, and the
equidistribution results due to Deligne, to prove that for the
zeta functions of curves over finite fields satisfy the
Montgomery-Odlyzko law (i.e. their pair-correlation is the pair
correlation of random unitary matrices) when g and q tend to
infinity (i.e. their result holds averaging over curves of genus
g at the limit when q and g tends to infinity).
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Deligne Equidistribution Theorem

Theorem (Deligne’s Equidistribution Theorem)

LetMg (Fq) be the moduli space of curves of genus g over Fq (i.e.
the set of Fq-isomorphism classes of curves of genus g over Fq).
Let f be any continuous class function on USp(2g). Then

lim
q→∞

∑′

C∈Hg (Fq)
f (ΘC )∑′

C∈Hg (Fq)
1

=

∫
USp(2g)

f (A)dA.

where
∑′

means that each term is counted with the weights
1/#Aut(C/Fq).



Katz and Sarnak

The k-th consecutive spacings measure µk(A) on U(N) is

µk(A)[α, β] =
#
{

1 ≤ j ≤ N : N
2π (θj+k − θk) ∈ [α, β]

}
N

Then, Katz and Sarnak showed that

lim
N→∞

∫
U(N)

µk(A) dA = µk(GUE).

Moreover, let µk(C/Fq) be the k-th consecutive spacings measure
between the zeroes

γj = e iθj/
√

q, j = 1, . . . , 2g

of the zeta function of C/Fq ordered by size of θj .
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Katz and Sarnak

Let the Kolmogoroff-Smirnov discrepancy between two measures µ
and ν be

discrep(µ, ν) = sup {|µ(I )− ν(I )| : I ⊆ R} .

Theorem (Katz and Sarnak)

lim
g→∞

lim
q→∞

1

|Mg (Fq)|
∑

C∈Mg (Fq)

discrep(µk(C/Fq), µk(GUE)) = 0.



Characteristic polynomials of random matrices

zeroes of ζ(s) ↔ eigenvalues of A ∈ U(N)

ζ(s) ↔ characteristic polynomial of A ∈ U(N)

Let

PA(λ) = det (λI − A) =
N∏

k=1

(
λ− e iθk (A)

)
where θ1, . . . , θk are the eigenvalues of A.
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Moments of ζ(s)

Let

Mk(T ) =
1

T

∫ T

0
|ζ(1/2 + it)|2k dt.

We know that

M1(T ) ∼ log T (Hardy and Littlewood, 1918)

M2(T ) ∼ 1

2π2
log4 T (Ingham, 1926)

and it is conjectured that for any integer k

Mk(T ) ∼ ck logk2
T .
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Moments of ζ(s)

It is conjectured that

Mk(T ) ∼ ck logk2
T =

gkak

Γ(1 + k2)
logk2

T .

where the arithmetic factor ak is given by

ak =
∏
p

(
1− 1

p

)k2 ∞∑
j=0

dk(pj)2

pj
.

We have that g1 = 1 (Hardy and Littlewood, 1918), g2 = 2
(Ingham, 1926) and it was conjectured that g3 = 42 (Conrey and
Ghosh, 1984) and g4 = 24024 (Conrey and Gonek, 1998).
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Moments of ζ(s)

Conjecture (Keating and Snaith, 2000)

Mk(T ) ∼ ck logk2
T =

gkak

Γ(1 + k2)

where the geometric factor gk is given by

gk =
k−1∏
j=0

j!

(j + k)!
.

This comes from computing the moments of PA(λ).
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Moments of characteristic polynomials of random matrices

Theorem (Keating and Snaith, 2000)

For any λ such that |λ| = 1, and for any complex number k,

Mk(N) =

∫
U(N)

|PA(λ)|2k dA =
N∏

j=1

Γ(j)Γ(j + 2k)

Γ(j + k)2
.

Furthermore, when k is an integer

lim
N→∞

Mk(N)

Nk2 =
G (1 + k)2

G (1 + 2k)
=

k−1∏
j=0

j!

(j + k)!
,

where G (k) is Barnes’ double Gamma-function satisfying G (1) = 1
and G (z + 1) = Γ(z)G (z).



Moments of characteristic polynomials of random matrices

Theorem (Keating and Snaith, 2000)

For any λ such that |λ| = 1, and for any complex number k,

Mk(N) =

∫
U(N)

|PA(λ)|2k dA =
N∏

j=1

Γ(j)Γ(j + 2k)

Γ(j + k)2
.

Furthermore, when k is an integer

lim
N→∞

Mk(N)

Nk2 =
G (1 + k)2

G (1 + 2k)
=

k−1∏
j=0

j!

(j + k)!
,

where G (k) is Barnes’ double Gamma-function satisfying G (1) = 1
and G (z + 1) = Γ(z)G (z).



Further work

• One can compute more statistics on the zeroes of ζ(s) and
check that they match the statistics for eigenvalues of random
matrices;

• An interesting statistics is the distribution of low-lying
zeroes, which leads to the Density Conjecture of Katz and
Sarnak;

• One can consider more general L-functions and compare
their statistics with statistics of random matrices, maybe for
other groups as O(N) or Sp(N);

• One consider L-functions in families, and consider statistics
when the L-functions vary in the family (inspired by the work
of Katz and Sarnak).
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Families of L-functions

Moments of ζ(1/2 + it) ↔ average over t ∈ R

Moments of L(1/2, f ) ↔ average over f ∈ F

If we know the moments of L(1/2, f ) as f ∈ F varies, we know

• the distribution of the values of L(1/2, f ) as f ∈ F varies;

• the vanishing of L(1/2, f ) as f ∈ F varies, using some
discretisation coming from the arithmetic.

Let
F(T ) = {f ∈ F : c(f ) ≤ T}

where c(f ) is the conductor of f .
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Families of L-functions

The probability density function for the distribution of the special
values L(1/2, f ) for f ∈ F(T ) is given by

P(x ,T ) =
1

2πi

∫
(c)

Ms(T )x−s−1 ds

where for any s ∈ C, Ms(T ) are the moments

Ms(T ) =
1

#F(T )

∑
c(f )≤T

|L(1/2, f )|s .

One can use the Random Matrix model to replace the moments
Ms(T ) by the moments Ms(N) for a group of random matrices.
The appropriate scaling is N = log c(f ).
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L-functions attached to elliptic curves

Let E/Q be an elliptic curve with conductor NE and L-function

L(s,E ) =
∞∑

n=1

aE (n)

ns

=
∏
p-NE

(
1− aE (p)

ps
+

1

p2s−1

)−1 ∏
p|NE

(
1− aE (p)

ps

)−1

=
∏
p-NE

(
1− αE (p)

ps

)−1
(

1− αE (p)

ps

)−1 ∏
p|NE

(
1− aE (p)

ps

)−1

where
#E (Fp) = p + 1− aE (p).



L-functions attached to elliptic curves

The L-function L(s,E ) converges absolutely for Re(s) > 2, and has
analytic continuation and functional equation

Λ(2− s,E ) = (2π)−sN
s/2
E Γ(s)L(s,E ) = w(E )Λ(2− s,E ),

where the sign of the functional equation w(E ) can be ±1.

Conjecture (Birch and Swinnerton-Dyer)

ords=1L(s,E ) = rank (E (Q)) .
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Family of Quadratic Twists

Let E be the elliptic curve

y2 = x3 + ax + b.

Then the quadratic twist of ED is the curve

Dy2 = x3 + ax + b.

It is not difficult to see that

L(s,ED) = L(s,E , χD) =
∞∑

n=1

aE (n)χD(n)

ns

where χD(n) is the quadratic character

χD(n) =

(
D

n

)
.
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Family of Quadratic Twists

The twisted L-function

L(s,E , χD) =
∑
n≥1

aE (n)χD(n)

ns

has analytic continuation and functional equation

Λ(s,E , χD) =

(
D
√

NE

2π

)s

Γ(s)L(s,E , χD)

= w(E , χD)Λ(2− s,E , χD)

where
w(E , χD) = w(E )χD(−NE ).



Family of Quadratic Twists

When the sign of the functional equation

w(E , χD) = w(E )χD(−NE ) = −1,

using s = 1 in the functional equation

Λ(s,E , χD) = w(E , χD)Λ(2− s,E , χD),

we have that

Λ(1,E , χD) = −Λ(1,E , χD) =⇒ Λ(1,E , χD) = 0 =⇒ L(1,E , χD) = 0.

Since w(E , χD) = w(E )χD(−NE ), w(E , χD) = −1 for half of
the discriminants D.
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Conjecture (Goldfeld, 1979)

Let rD be the order of vanishing of L(s,E , χD) at s = 1. Then

lim
T→∞

1

# {|D| ≤ T}
∑
|D|≤T

rD =
1

2
.

Then, if we restrict the family F to

F+ = {L(s,E , χD) : w(E , χD) = 1} ,

we expect that “most” L(s,E , χD) would not vanish at s = 1.

Using the Random Matrix Theory model, the distribution of the
values of L(1,E , χD) is related to the distribution of the values of
PA(λ) where A varies over the set of 2N × 2N orthogonal matrices
(symmetry type O+).
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Vanishing of quadratic twists

Conjecture (Conrey, Keating, Rubinstein and Snaith, 2000)

Let NE (T ) be the number of discriminants D with |D| ≤ T such
that w(E , χD) = 1, and L(1,E , χD) = 0. Then,

NE (T ) ∼ bET 3/4 logeE T

for some constants bE and eE depending on E.

Hypothesis: The moments

Mk(T ) =
1

#F+(T )

∑
L(s,E ,χD )∈F+

|D|≤T

|L(1,E , χD)|k

behave like the moments of the characteristic polynomials of
matrices in SO(2N) where N ∼ log T .
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Higher Order characters

Let k ≥ 3 be a prime.
We study vanishing in the family of the twisted L-functions
L(s,E , χ) where χ is a primitive Dirichlet characters of order k . In
particular, χ is a multiplicative function

χ : (Z/qZ)∗ → C∗

such that χ(a)k = 1 for all a ∈ (Z/qZ)∗.

Let τ(χ) be the Gauss sum

τ(χ) =
∑

a mod q

χ(a)e2πia/q.

Then, |τ(χ)|2 = q.
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Higher Order characters

The twisted L-function

L(s,E , χ) =
∑
n≥1

aE (n)χ(n)

ns

satisfies the functional equation

Λ(s,E , χ) =

(
q
√

NE

2π

)s

Γ(s)L(s,E , χ)

= w(E , χ)Λ(2− s,E , χ).

where w(E , χ) =
wEχ(NE )τ(χ)2

q
.

As the functional equation does not relate L(s,E , χ) to itself,
w(E , χ) 6= 1 does not imply that L(1,E , χ) = 0.
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Higher Order characters

Let

NE ,k(T ) = # {χ of order k, cond(χ) ≤ T , L(1,E , χ) = 0} .

The Density Conjecture of Katz and Sarnak predicts that

NE ,k(T ) = o
(
# {χ order k : cond(χ) ≤ T}

)
= o(T ).

If K/Q is a cyclic extension of degree k and conductor q with
Galois group G and character group Ĝ , then

L(s,E/K ) =
∏
χ∈Ĝ

L(s,E , χ).

Then, under the Birch and Swinnerton-Dyer conjecture, NE ,k(T ) is
(k − 1) times the number of cyclic extensions K/Q of degree k
and conductor ≤ T with rank(E/K ) > rank(E/Q).
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Conjectural asymptotics for NE ,k(T )

Conjecture (David-Fearnley-Kisilevsky, 2006)

If k = 3, then NE ,k(T ) ∼ bET 1/2 logeE T as T →∞.

If k = 5, then NE ,k(T ) is unbounded, but NE ,k(T )� T ε for
any ε > 0 as X →∞.

If k ≥ 7, then NE ,k(T ) is bounded.

Hypothesis: The moments

Mk(T ) =
1

#F(T )

∑
L(s,E ,χ)∈F

c(χ)≤T

|L(1,E , χ)|k

behave like the moments of the characteristic polynomials of
matrices in U(N) where N ∼ log T .



Conjectural asymptotics for NE ,k(T )

Conjecture (David-Fearnley-Kisilevsky, 2006)

If k = 3, then NE ,k(T ) ∼ bET 1/2 logeE T as T →∞.

If k = 5, then NE ,k(T ) is unbounded, but NE ,k(T )� T ε for
any ε > 0 as X →∞.

If k ≥ 7, then NE ,k(T ) is bounded.

Hypothesis: The moments

Mk(T ) =
1

#F(T )

∑
L(s,E ,χ)∈F

c(χ)≤T

|L(1,E , χ)|k

behave like the moments of the characteristic polynomials of
matrices in U(N) where N ∼ log T .



Conjectural asymptotics for NE ,k(T )

Conjecture (David-Fearnley-Kisilevsky, 2006)

If k = 3, then NE ,k(T ) ∼ bET 1/2 logeE T as T →∞.

If k = 5, then NE ,k(T ) is unbounded, but NE ,k(T )� T ε for
any ε > 0 as X →∞.

If k ≥ 7, then NE ,k(T ) is bounded.

Hypothesis: The moments

Mk(T ) =
1

#F(T )

∑
L(s,E ,χ)∈F

c(χ)≤T

|L(1,E , χ)|k

behave like the moments of the characteristic polynomials of
matrices in U(N) where N ∼ log T .



Conjectural asymptotics for NE ,k(T )

Conjecture (David-Fearnley-Kisilevsky, 2006)

If k = 3, then NE ,k(T ) ∼ bET 1/2 logeE T as T →∞.

If k = 5, then NE ,k(T ) is unbounded, but NE ,k(T )� T ε for
any ε > 0 as X →∞.

If k ≥ 7, then NE ,k(T ) is bounded.

Hypothesis: The moments

Mk(T ) =
1

#F(T )

∑
L(s,E ,χ)∈F

c(χ)≤T

|L(1,E , χ)|k

behave like the moments of the characteristic polynomials of
matrices in U(N) where N ∼ log T .


