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1. Introduction and results

Let K be a number field, [K : Q] <∞, OK maximal order in K. Let Disc K = Disc OK ∈ Z. Everything
we say today will be over Q for simplicity, but we could also do this for relative extensions and ask the same
questions and get the same sort of results.

Let Gal(K) = Gal(K̃/Q) be the Galois group of K (Gal(K) ⊂ S[K:Q]) acting on K → C. Suppose we have
a permutation group G ⊂ Sn , and define

N(G,X) := #{isomorphism classes of K with Gal(K) = G and Disc(K)| ≤ X.

The question of counting number fields, then, amounts to studying this asymptotically in X.
We can formulate more refined counting questions. Let p be a prime of Z, pOK =

∏
pi
ei , fi = [OK/pi : Z/p].

Definition 1.1. A splitting type is the multiset of ramification and inertia degrees: {{(ei, fi)}} (or more
precisely, isomorphism class of K ⊗Qp as a Qp-algebra).

Let S be a splitting type at p. We define

ProbG(S) := lim
X→∞

#{isomorphism classes of K with Gal(K) = G, |Disc(K)| ≤ X, splitting type S}
N(G,X)

.

Understanding these probabilities is a “vertical question,” which we compare to the “horizontal question”:
fix K, vary p, ask about the densities of splitting types. These are given by Chebotarev density theorem as a
function of Gal(K).

Remark 1.2. For fixed K, finitely many p ramify. For fixed p, there can be infinitely many K in which p
ramify.

Guesses:

(1) Chebotarev probability: restrict to unramified splitting, might guess that horizontal probabilities
equal vertical probabilities

(2) Fix S1, . . . , Sk splitting types at distinct primes, “independence guess”: Prob(S1 + . . . + Sk) =∏
i Prob(Si)

There are many ways and reasons in which these guesses are wrong.

Example 1.3. G = Z/8 ⊂ S8 (Wang) There is no K with Gal(K) = Z/8, unramified and unsplit at 2. S at 2,
e = 1, f = 8 ProbZ/8(S) = 0. For fixed K, Gal(K) = Z/8, half of the primes have this splitting type.

Theorem 1.4 (Wright). Given G abelian, prime p, all splitting types that occur over p for some K with
Gal(K) = G, occur with positive probability.

Theorem 1.5 (Wood). These probabilities do not always agree with the Chebotarev probabilities, even over
odd primes.

Example 1.6. ProbZ/9 (split completely at q | unramified at q) < 1
9 , q prime, q = 2, . . . , 13.
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Theorem 1.7 (Wood). Given G abelian, p prime, if we count by conductor instead of discriminant, over
p 6= 2, splitting types occur with the Chebotarev probability, and for p = 2, the splitting types that occur have
the same relative probabilities as in the Chebotarev question.

Theorem 1.8 (Wood). Independence can fail when counting by discriminant.

Theorem 1.9 (Wood). For G abelian, counting by conductor, independence holds.

So this raises the question: if we’re counting number fields, which invariant should we use? (See Wood’s
talk next week.)

How do we count number fields with abelian Galois groups and certain splitting types?

2. Proofs

The strategy does not differ, whether counting by discriminant or counting by conductor. For G abelian,
G ⊂ SG. By class field theory, we know

{K with Gal(K) = G} ←→ {JQ → G},
where the idèle class group JQ = (R∗ ×

∏
pQ∗p)/Q∗ →→ G.

Make the Dirichlet series
∑
ann

−s, where an is the number of homomorphisms with invariant n. So if we
can study

∑
ann

−s as a complex function of s, then the rightmost pole determines the order of growth of∑
n≤X an, and the residue determines the constant. This needs analytic continuation of the function of s to

the line of the rightmost pole.
In the case of S3, Datskovsky and Wright used this. Can use CFT to count abelian number fields.
If we use J0

Q →→ G, with J0
Q '

∏
p Z∗p then we have

J0
Q

//

��

G

∏
p Z∗p

φ

=={{{{{{{{{

with φ(1, . . . , 1, p, 1, . . . , 1) = φ( 1
p , . . . ,

1
p , 1,

1
p , . . . ,

1
p ).

Then writing ∏
p

 ∑
φ:Z∗

p→G

1

invt(φ)s

 ,

we compute local factors and relate this to L-functions to get analytic continuation (expressing in terms of
roots of Hecke L-functions, zeta functions of number fields, and other parts that are easy to continue). If
we do this, we obtain total asymptotics of counting JQ → G, and inclusion-exclusion allows us count the
surjective homomorphisms.

Harder: say we wanted to know the probability Prob(2 splits completely). This is a question about if
(1, 2, 1, ..., 1) 7→ 0. So we’ll count continuous homomorphisms Q∗2×

∏
p>2 Z∗p → G. Then we pick out the ones

in which (2, 2, ...2) 7→ 0. Here we’re using

Q∗2 ×
∏
p>2

Z∗p/〈2〉 ' J0
Q.

We do this by summing over group characters. Then∑
ann

−s =
∑

inc-excl

∑
group char

Euler products.

Multiple summands have the same rightmost pole, but when counting by conductor, they have the same
residue. Counting by discriminant, they have different residues.


