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abstract

We propose a discrete-time stochastic volatility model in which regime switching
serves three purposes. First, changes in regimes capture low-frequency variations.
Second, they specify intermediate-frequency dynamicsusually assigned to smooth
autoregressive transitions. Finally, high-frequency switches generate substantial
outliers. Thus a single mechanism captures three features that are typically viewed
as distinct in the literature. Maximum-likelihood estimation is developed and per-
forms well in finite samples. Using exchange rates, we estimate a version of the
process with four parameters and more than a thousand states. The multifractal
outperforms GARCH, MS-GARCH, and FIGARCH in- and out-of-sample. Con-
siderable gains in forecasting accuracy are obtained at horizons of 10 to 50 days.
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Over the past 15 years, stochastic regime switching (Hamilton 1989, 1990) has

proven to be extremely useful for modeling economic and financial time series.1
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While the theoretical formulation is very general, empirical researchers most

commonly apply this approach to low-frequency variations and rely on other

techniques for shorter-run dynamics. For example, Markov switching autoregres-

sive conditionally heteroscedastic (ARCH) and generalized autoregressive con-

ditionally heteroscedastic (GARCH) processes separately specify regime shifts at

low frequencies, smooth autoregressive volatility transitions at midrange frequen-

cies, and a thick-tailed conditional distribution of returns at high frequency [Cai
(1994), Hamilton and Susmel (1994), Gray (1996), Klaassen (2002)]. In this article,

we propose an alternative volatility model based on pure regime switching at all

frequencies.

Previous empirical applications typically employ only a small number of

discrete states. This partly stems from the common view that regime switches

occur infrequently. In a general formulation, a more practical limitation is that

the number of parameters grows quadratically with the cardinality of the state

space. Restrictions on switching probabilities offer a natural solution, as pursued
for example by Bollen, Gray, and Whaley (2000) in a four-regime model.2 We extend

this approach by considering a tight set of restrictions inspired by the multifractal

literature. This permits the routine estimation of good-performing models with

more than a thousand states, a dense transition matrix, and only four parameters.

Our specification is particularly influenced by an innovation in multifractal

modeling from Calvet and Fisher (2001). This earlier theoretical research uses

Markov switching to develop the first time-stationary formulation of multifractal

diffusions and also provides a weakly convergent sequence of discrete filters. We
now propose a variant of these filters to directly model financial series in discrete

time. In this framework, total volatility is the multiplicative product of a large but

finite number of random components. We assume for simplicity that these com-

ponents are first-order Markov and identical except for time scale. The compo-

nents have identical marginal distributions and differ only in their switching

probabilities. The specification is completed by assuming that the progression of

switching probabilities is approximately geometric. The Markov construction

delivers a parsimonious stochastic volatility model with a closed-form likelihood.
The multifractal structure also generates substantial outliers, long-memory

features in volatility, and a decomposition of volatility into components with

these processes to econometrics and spurred the development of a large body of research. Contributions

to the original version of the model advance estimation and testing [Hansen (1992), Shephard (1994),

Albert and Chib (1993), Garcia (1998)] and investigate a wide range of empirical applications [e.g.,

Hamilton (1988), Garcia and Perron (1996)]. The approach has been extended to incorporate GARCH

transitions [Cai (1994), Hamilton and Susmel (1994), Kim (1994), Gray (1996), Kim and Nelson (1999),

Klaassen (2002)], vector processes [Hamilton and Lin (1996), Hamilton and Perez-Quiros (1996)], and

time-varying transition probabilities [Diebold, Lee, and Weinbach (1994), Durland and McCurdy (1994),

Filardo (1994), Perez-Quiros and Timmerman (2000)]. See Hamilton and Raj (2002) for a recent survey.
2 Duration-dependent Markov switching models also use restrictions on state parameters and switching

probabilities. For example, Maheu and McCurdy (2000) expand a two-state model by conditioning the

volatility level and switching probability on duration in the state. The resulting transition matrix is sparse,

and the system either progresses to the next duration of the same state or the first duration of the other

state.
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heterogenous decay rates. We accordingly call our model the Markov switching

multifractal (MSM).

An empirical investigation of four daily exchange rate series shows that

MSM performs well in comparison with the Student-GARCH(1,1) of Bollerslev

(1987), the Markov switching GARCH (MS-GARCH) of Klaassen (2002), and the

fractionally integrated GARCH (FIGARCH) of Baillie, Bollerslev, and Mikkelsen

(1996). The choice of alternative processes is guided by several considerations.
First, the multifractal easily permits maximum-likelihood (ML) estimation and

analytical multistep forecasting. We therefore compare it to models with the same

appealing features. GARCH(1,1) is an obvious choice because it is a leading model

for volatility forecasting [see, e.g., Akgiray (1989), Pagan and Schwert (1990), West

and Cho (1995), Andersen and Bollerslev (1998), and Hansen and Lunde (2001)].

MS-GARCH combines regime shifts with smooth weighting of past shocks and

thus represents a compromise between the two approaches.3 Like the multifractal,

FIGARCH permits long memory in volatility and is thus consistent with empirical
evidence on exchange rates [Baillie, Bollerslev, and Mikkelsen (1996)].

The multifractal process compares favorably with GARCH(1,1) both in- and

out-of-sample. Our model has a higher likelihood in-sample for all currencies, and

the statistical significance of these differences is confirmed by a Heteroskedastic

and Autocorrelation Consistent (HAC) version of the Vuong (1989) test. Since both

models have the same number of parameters, the multifractal is also preferred by

standard selection criteria. Analogous results are obtained out-of-sample. While

one-day forecasts from the two models perform similarly, the multifractal dom-
inates at longer horizons. The difference is most pronounced for 20 and 50 days.

For example, in the case of the British pound, the 50-day forecasting R2 is 27.3% for

MSM as compared to ÿ2.6% for GARCH(1,1). Similar gains are obtained for other

currencies. The empirical evidence thus shows that the multifractal model

improves on GARCH(1,1) both in- and out-of-sample.

The MS-GARCH process gives substantially better fit than GARCH(1,1) in-

sample. This is partly attributable to a larger number of parameters, and suggests

the possibility of overfitting. Using a Bayesian information criterion (BIC), the
multifractal is statistically indistinguishable from MS-GARCH in-sample for all

four currencies. Out-of-sample, MS-GARCH is also comparable to the multifractal

at short horizons, but substantially dominated at longer horizons. Thus MS-

GARCH is overall dominated by MSM.

The multifractal also compares favorably with FIGARCH in- and out-of-

sample. While MSM and FIGARCH have the same number of parameters, the

estimated likelihoods are substantially higher with our model for all currencies.

Out-of-sample, FIGARCH tends to provide poorer forecasts than the multifractal,
even at long horizons. For instance, with the Japanese yen and British pound, the

50-day forecasting R2 is negative for FIGARCH compared with values larger than

20% for our model. The multifractal is overall the best-performing process.

3 The original MS-GARCH process of Gray (1996) does not conveniently permit multistep forecasting, and

we therefore consider the variant formulation introduced for this purpose by Klaassen (2002).
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A pure Markov switching model thus captures the same dynamics that in

previous literature have required not only regime switching but also linear

GARCH transitions and a thick-tailed conditional distribution of returns. It is

striking that a single mechanism can play all three of these roles so effectively.

Our innovation that achieves this surprising economy of modeling technique is

based on scale invariance. We make this principle operational by introducing a

pure Markov switching formulation where scale invariance helps to specify the
parameters and transitions of a high-dimensional state space.

Our article contributes to the multifractal literature by offering a convenient

time-series construction accompanied by effective estimation and testing meth-

ods. Calvet, Fisher, and Mandelbrot (1997) introduce the Multifractal Model of

Asset Returns (MMAR), a class of diffusions that capture the outliers, moment

scaling, and long memory in volatility exhibited by many financial time series.

While providing an excellent fit to many aspects of financial data, the MMAR uses

a combinatorial construction that is not particularly well suited to econometrics.
In particular, regime changes take place at predetermined dates, making the

model non stationary. Early estimation efforts have thus focused on unconditional

moments of returns.4 Calvet and Fisher (2002a) use moment scaling to develop an

estimator and diagnostic tests of the model. This previous empirical work is

constrained in many ways by the nonstationarity of the MMAR. We now employ

a stationary Markov switching formulation and develop ML estimation, which is

new to the literature on multifractal measures and processes.

Section 1 presents the discrete-time model. Section 2 develops the ML esti-
mator and assesses its accuracy in Monte Carlo simulations. Section 3 discusses

estimation results for four exchange rates. Section 4 compares our model with

alternative processes both in- and out-of-sample. Section 5 concludes. All proofs

are given in the appendix.

1 THE MARKOV SWITCHING MULTIFRACTAL

This section develops MSM, a discrete-time Markov process with multifrequency

stochastic volatility. The process has a finite number �kk of latent volatility state

variables, each of which corresponds to a different frequency.

1.1 Stochastic Volatility

We consider an economic series Xt defined in discrete time on the regular grid

t¼ 0, 1, 2, . . . ,1. In applications, Xt will be the log-price of a financial asset or

exchange rate. Define the innovations xt�XtÿXtÿ1. A common modeling meth-

odology assumes that the system is hit every period by a single shock that

4 The MMAR implies that return moments vary as power functions of the observation interval, which is

consistent with many financial series. Calvet, Fisher, and Mandelbrot (1997) and Calvet and Fisher (2002a)

find evidence of moment scaling in powers of the absolute value of returns. Further evidence is provided

by Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2003). See LeBaron (2001) for a discussion

of robustness.

52 Journal of Financial Econometrics



progressively phases out over time [e.g., Engle (1982)]. We consider instead an

economy with �kk components M1;t, M2;t, . . . , M�kk;t, which decay at heterogeneous

frequencies g1, . . . ,g�kk. Such a model could be very unwieldy as the number �kk
becomes very large. We will see, however, that the process can be parsimoniously

specified by a small set of parameters.

We model the returns xt�Xt ÿ Xtÿ1 by

xt¼sðM1;tM2;t . . . M�kk;tÞ
1=2

«t, ð1Þ

where s is a positive constant and the random variables {«t} are i.i.d. standard

Gaussians N (0, 1). The random multipliers or volatility components Mk;t are persis-
tent, nonnegative, and satisfy E(Mk;t)¼ 1. We consider for simplicity that the

multipliers M1;t, M2;t, . . . , M�kk;t at a given time t are statistically independent. The

parameter s is then equal to the unconditional standard deviation of the innova-

tion xt.

Equation (1) defines a stochastic volatility model xt¼st«t with the multi-

plicative structure st¼s(M1;tM2;t, . . . , M�kk;t)
1/2. We conveniently stack the period

t volatility components into a vector

Mt¼ðM1;t, M2;t, . . . , M�kk, tÞ:

For any m¼ (m1, . . . , m�kk) 2 R
�kk, let g(m) denote the product

Q�kk
i¼ 1 mi. Volatility at

time t is then st¼s[g(Mt)]
1/2.

The properties of volatility are driven by the stochastic dynamics of the vector

Mt. We assume for parsimony that Mt is first-order Markov. This facilitates the

simulation of {xt} and permits ML estimation. It is natural to call Mt the volatility
state vector and each component Mk;t a state variable. The econometrician observes

the returns xt¼s[g(Mt)]
1/2«t, but not the vector Mt itself. The vector Mt is therefore

latent, and must be inferred recursively by Bayesian updating.
Each Mk;t follows a process that is identical except for time scale. Assume

that the volatility state vector has been constructed up to date tÿ 1. For each

k2 {1, . . . , �kk}, the next period multiplier Mk;t is drawn from a fixed distribution

M with probability gk, and is otherwise equal to its previous value: Mk;t¼Mk;tÿ1.

The dynamics of Mk;t can be summarized as

Mk;t drawn from distribution M with probability gk

Mk;t¼Mk;tÿ1 with probability 1ÿ gk:

The switching events and new draws from M are assumed to be independent

across k and t. The volatility components Mk,t thus differ in their transition

probabilities gk, but not in their marginal distribution M. These features greatly

contribute to the parsimony of the model.

The transition probabilities g� (g1, g2, . . . , g�kk) are specified as

gk¼ 1ÿ ð1ÿ g1Þðb
kÿ1Þ, ð2Þ

where g1 2 (0, 1) and b 2 (1,1). This specification is introduced in Calvet and
Fisher (2001) in connection with the discretization of a Poisson arrival process.
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Since 1ÿgk¼ (1ÿg1)(bkÿ 1), the logarithms of staying probabilities are exponen-

tially decreasing with k. Consider a process with very persistent components and

thus a very small parameter g1. For small values of k, the quantity g1bkÿ1 remains

small and the transition probability satisfies

gk � g1bkÿ1:

The transition probabilities of low-frequency components grow approximately at
geometric rate b. At higher frequencies (gk � 1), the rate of increase slows down

and Equation (2) guarantees that the parameter gk remains less than one. In

empirical applications, it is numerically convenient to estimate parameters of the

same magnitude. Since g1< � � �<g�kk < 1 < b, we choose (g�kk, b) to specify the set of

transition probabilities.

The integer �kk determines the number of volatility frequencies and its choice is

viewed as a model selection problem. The multifractal construction imposes only

minimal restrictions on the marginal distribution of the multipliers: M � 0 and
E(M)¼ 1. This allows flexible parametric or even nonparametric specifications of

M. For simplicity, however, this article focuses on the simple case where M is a

binomial random variable taking values m0 or 2 ÿ m0 with equal probability. The

full parameter vector is then

c�ðm0, s, b, g�kkÞ 2 R4
þ,

where m0 characterizes the distribution of the multipliers, s is the unconditional

standard deviation of returns, and b and g�kk define the set of switching probabil-

ities. In Section 2, we will develop and empirically implement the ML estimation
of this vector.

We call this process the Markov Switching Multifractal. The notation MSM(�kk)

refers to versions of the model with �kk frequencies. Economic intuition and earlier

work suggest that the multiplicative structure of Equation (1) is appealing to

model the high-variability and high-volatility persistence exhibited by financial

time series. When a low-level multiplier changes, volatility varies discontinuously

and has strong persistence. In addition, high-frequency multipliers produce

substantial outliers.

1.2 Properties

The MSM construction permits low-frequency regime shifts, and thus long vola-

tility cycles in sample paths. We will see that in exchange rate series, the duration

of the most persistent component, 1/g1, is typically of the same order as the length

of the data. Estimated processes thus generate volatility cycles with periods

proportional to the sample size, a property also apparent in the sample paths of

long-memory processes.
Long memory is often defined by a hyperbolic decline in the autocovariance

function as the lag goes to infinity. Fractionally integrated processes generate such

patterns by assuming that an innovation linearly affects future periods at

a hyperbolically declining weight. As a result, fractional integration tends to
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produce smooth volatility processes. By contrast, our approach generates long

cycles with a switching mechanism that also gives abrupt volatility changes. The

combination of long-memory behavior with sudden volatility movements has a

natural appeal for financial econometrics.

In earlier work, we proposed a definition of long memory that applies to

continuous-time processes defined on a bounded time domain. This definition is

based on increments over progressively smaller intervals. Our discrete-time pro-
cess can also generate a hyperbolic decline in autocovariances for a range of lags.

For every moment q � 0 and every integer n, let rqðnÞ¼ corrð j xt j q, j xtþn j qÞdenote

the autocorrelation in levels. We choose a fixed vector c and consider the positive

parameter dðqÞ¼ logbðEðMqÞ=½EðMq=2Þ�2). Consider two arbitrary numbers a1 and

a2 in the open interval (0, 1). The set of integers I�kk¼fn : a1logbðbkkÞ� logb n�
a2logbðbkkÞ contains a large range of intermediate lags. We show this in the appen-

dix

Proposition 1. The autocorrelation in levels satisfies

sup
n2I�kk

����� ln rqðnÞ
ln nÿdðqÞ ÿ 1

����� ! 0

as �kk ! þ1.

MSM thus mimics the hyperbolic autocovariograms ln rq(n)�ÿ d(q) ln n
exhibited by many financial series [e.g., Dacorogna et al. (1993), Ding, Granger,

and Engle (1993), Baillie, Bollerslev, and Mikkelsen (1996), Gouri�eeroux and Jasiak

(2002)]. This result complements earlier research that has emphasized the diffi-

culty of distinguishing between long memory and structural change in finite

samples [e.g., Bhattacharya, Gupta, and Weymire (1983), Hidalgo and Robinson

(1996), Diebold and Inoue (2001)]. MSM illustrates that a Markov chain regime-
switching model can exhibit one of the defining features of long memory, a

hyperbolic decline of the autocovariogram.

A representative return series is illustrated in Figure 1. The graph reveals

large heterogeneity in volatility levels and substantial outliers. This is notable
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Figure 1 Simulated multifractal process. This figure shows simulated log-price differences of a
multifractal process. The process has �kk ¼ 8 frequencies and parameter values m0 ¼ 1.4, s ¼ 0.5,
g�kk ¼ 0.95, and b ¼ 3. These parameter values are roughly consistent with estimates that are
found to provide a good description of several exchange rate series in later sections of the article.
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since the return process has by construction finite moments of every order. In

Calvet and Fisher (2001), we introduced Paretian tails by considering i.i.d. shocks

of the form «t¼ZtVt, where {Zt} are i.i.d. standard Gaussians and {Vt} are i.i.d.

draws from a distribution V with Paretian tails. The random variable V is the limit

distribution of renormalized quadratic variation over a fixed horizon, and is fully

specified by m0, b, and g�kk. The specification «t¼ZtVt represents an interesting

direction for future research, but this article focuses on the Gaussian case for
several reasons. First, the likelihood is then available in closed form. Second, we

will show that even when «t is Gaussian, high-frequency regime switches are

sufficient to mimic in finite samples the heavy tails exhibited by the data. Finally,

the basic specification of our process performs well relative to existing competitors

and provides a useful benchmark for future refinements.

Another interesting property of MSM is that when �kk!1, the limiting

continuous-time process lies outside the class of Itôo diffusions. The sample paths

are continuous but exhibit a high degree of heterogeneity in local behavior, which
is characterized by a continuum of local Hölder exponents in any finite time

interval. We refer the reader to Calvet and Fisher (2001, 2002a) for a full develop-

ment of the continuous-time multifractal limit.

2 ML ESTIMATION

When the multiplier M has a discrete distribution, there exist a finite number of

volatility states. Standard filtering methods then provide the likelihood function

in closed form.

2.1 Updating the State Vector

We assume in the rest of this article that the multiplier M has a finite number bm of

values. The volatility state vector Mt¼ (M1;t, M2;t, . . . , M�kk;t) therefore takes d ¼
b

�kk
m possible values m1, . . . , md 2 R�kk

þ. The dynamics of the Markov chain Mt are

characterized by the transition matrix A¼ (ai; j)1� i; j� d with components aij¼
P(Mtþ1¼mj jMt¼mi).5

Conditional on the volatility state Mt, the return xt is Gaussian with density

fxtðx jMt¼miÞ¼ ½sgðmiÞ�ÿ1n½x=sgðmiÞ�, where n( � ) denotes the density of a stan-

dard normal. The econometrician does not directly observe Mt, but can compute

the conditional probabilities

P
j
i�PðMt¼mj j x1, . . . , xtÞ

over the unobserved states m1, . . . , md. We can stack these probabilities in the row

vector Pt¼ðP1
t , . . . , Pd

t Þ 2 Rd
þ. Letting i¼ (1, . . . , 1) 2 Rd, we know that Pti

0 ¼ 1.

5 We note that aij ¼
Q�kk

k¼1½ð1ÿ gkÞ1fmi
k
¼m

j

k
g þ gkPðM¼m

j
kÞ�, where mi

k denotes the mth component of vector

mi, and 1fmi
k
¼m

j

k
g is the dummy variable equal to one if mi

k ¼m
j
k, and zero otherwise. In Calvet and Fisher

(2001), the transition matrix differs because an innovation to a lower-frequency multiplier causes switch-

ing in all higher-frequency multipliers. Here we assume that arrival times are independent across

frequencies.
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The conditional probability vector Pt is computed recursively. By Bayes’

rule, Pt can be expressed as a function of the previous belief Ptÿ1 and the

innovation xt:

Pt ¼
vðxtÞ � ðPtÿ1AÞ
½vðxÞ � ðPtÿ1AÞ�i0 , ð3Þ

where x * y denotes the Hadamard product (x1y1, . . . , xdyd) for any x, y 2 Rd, and

vðxtÞ¼
nðxt=sgðm1ÞÞ

sgðm1Þ , . . . ,
nðxt=sgðmdÞÞ

sgðmdÞ

� �
:

These results are familiar in regime switching models.6 In empirical applications,

the initial vector P0 is chosen to be the ergodic distribution of the Markov process.

Since the multipliers (M1,1, . . . , M�kk,1) are independent, the components of P0

satisfy
Qj

0 ¼
Q�kk

l¼1 PðM¼m
j
lÞ for all j.

2.2 Closed-Form Likelihood

Having solved the conditioning problem, we easily check that the log-likelihood

function is

ln Lðx1, . . . , xT; cÞ¼
XT

t¼1

ln

"
vðxtÞ �

 
Ptÿ1A

!#
: ð4Þ

For a fixed �kk, we know that the ML estimator is consistent and asymptotically

efficient as T ! 1. Unlike standard stochastic volatility models [e.g. Ghysels,

Harvey, and Renault (1996)], MSM thus has a closed-form likelihood. The
parsimonious parameterization of the transition matrix represents an important

difference between MSM and standard Markov switching models. This allows us

to estimate MSM with reasonable precision even under a very large state space.

While the expectation maximization (EM) algorithm [Hamilton (1990)] is not

directly applicable with constrained transition probabilities, we now show that

numerical optimization of the likelihood function produces good results.

2.3 Small-Sample Properties

The small-sample properties of the ML estimator are assessed by Monte Carlo
simulations. We first examine parameter estimation when the specification has a

fixed number �kk of volatility components. We then analyze the choice of �kk, which

can be viewed as model selection. All simulations use binomial specifications

where the multiplier M takes values m0 and 2ÿm0 with equal probability.

To evaluate the finite-sample properties of ML estimation, we use specifica-

tions with �kk¼ 8 volatility components, which is representative of models perform-

ing well in later empirical sections. The simulation requires four parameters: the

binomial value m0, the unconditional standard deviation s, the frequency growth
rate b, and the high-frequency switching probability g�kk. The unconditional

6 See Hamilton (1994, chap. 22) for a derivation of Equations (3) and (4).
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standard deviation is a simple scale factor, which is normalized to unity: s¼ 1.

Remaining parameters are set to values consistent with the empirical results.

Specifically, all simulations use b¼ 3 and g�kk¼ 0.95. The binomial parameter

takes one of three values: m02 {1.3, 1.4, 1.5}. The sample length T belongs to

{T1, T2, T3}, where T1¼ 2500, T2¼ 5000, and T3¼ 10,000.

Table 1, panel A, reports the Monte Carlo results. Each of the nine columns

corresponds to a different combination of the parameter m0 and the sample length T.
For each column, we simulate 400 independent sample paths of the corresponding

model and sample length. ML estimation then provides a set of parameter esti-

mates and asymptotic standard errors for each path.7 The table has four rows

corresponding to each parameter. The first row gives the average point estimate

over the simulated paths. The second row is the standard error of these point

estimates, or the finite sample standard error (FSSE). The third row gives the root

mean squared error (RMSE) of the parameter estimates relative to the true para-

meter values. Finally, the average asymptotic standard error (AASE) gives the
average over the 400 simulations of the asymptotic standard errors calculated

from the information matrix. As sample size becomes large, we expect that the

AASE and the FSSE become close.

Maximum-likelihood estimation produces reasonable results. For m0, s, and b,

the biases are small and become negligible as sample size increases. The para-

meter m0 has a low standard error relative to its size and is thus well identified,

which is important because m0 largely determines fluctuations in volatility. By

contrast, the unconditional standard deviation s has standard errors that,
although declining as expected with sample length, are roughly 10% of the true

parameter value. This result is consistent with the low-frequency variations con-

tained in MSM, which create considerable uncertainty about long-run averages.

We view this property as a strength of our model, which encourages the econo-

metrician using MSM to be cautious about the long-run state of the economy. The

parameter b shows a moderate degree of uncertainty about the spacing between

frequencies. Finally, the high-frequency switching probability g�kk is the only para-

meter that shows more than a small bias. This disappears quickly as sample size
increases, and the standard errors are not generally large. Overall the Monte Carlo

simulations show that ML estimation produces reliable results given the sample

sizes considered in subsequent sections. We also note that the convenience and

efficiency of ML offers significant advantages relative to previous moment-based

estimators for multifractal processes.8

We next investigate by Monte Carlo whether the integer �kk can be reasonably

selected by ML. The simulations assume �kk¼ 5 volatility components and para-

meter values (m0, s, b, g�kk)¼ (1.5, 0.5, 8, 0.75) representative of later empirical

7 We start the optimizations at the true parameter values and iterate to convergence once. Preliminary work

considered searching for multiple local optima, and although these occasionally exist, they do not

significantly affect the means or standard deviations of the reported Monte Carlo results.
8 Early drafts of the article experimented with other computational methods, including Simulated Method

of Moments (SMM) and Efficient Method of Moments (EMM), which were found to be substantally less

efficient in finite sample than the ML estimator presented here.
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results. We simulate 400 paths of the process with T¼ 10,000 observations. For

each simulated path we compute the MLs corresponding to the specifications

MSM(�kk0), �kk0 2 {1, . . . , 8}, and select the integer �kk0 yielding the highest likelihood.

Table 1, panel B, reports the number of times each �kk0 is chosen. We observe that the

Table 1 Monte Carlo MLE results.

Panel A. Parameter estimation

m0 ¼ 1.3 m0 ¼ 1.4 m0 ¼ 1.5

T1 T2 T3 T1 T2 T3 T1 T2 T3

�mmsim 1.288 1.293 1.297 1.392 1.393 1.397 1.494 1.494 1.497

FSSE (0.026) (0.018) (0.012) (0.031) (0.019) (0.015) (0.032) (0.025) (0.015)

RMSE (0.029) (0.019) (0.012) (0.032) (0.021) (0.015) (0.033) (0.025) (0.016)

AASE (0.019) (0.013) (0.010) (0.018) (0.014) (0.011) (0.019) (0.014) (0.011)

�sssim 1.014 1.004 0.999 1.031 1.011 1.005 1.026 1.017 1.006

FSSE (0.167) (0.102) (0.073) (0.221) (0.147) (0.091) (0.255) (0.224) (0.105)

RMSE (0.167) (0.102) (0.073) (0.223) (0.148) (0.092) (0.256) (0.225) (0.105)

AASE (0.072) (0.056) (0.046) (0.091) (0.075) (0.057) (0.111) (0.088) (0.067)

�ggsim 0.867 0.908 0.934 0.907 0.935 0.940 0.924 0.938 0.944

FSSE (0.164) (0.113) (0.068) (0.111) (0.069) (0.047) (0.087) (0.055) (0.037)

RMSE (0.184) (0.120) (0.070) (0.119) (0.070) (0.048) (0.091) (0.056) (0.037)

AASE (0.181) (0.114) (0.071) (0.110) (0.068) (0.048) (0.078) (0.052) (0.036)
�bbsim 2.853 2.942 2.988 3.052 2.938 2.973 3.054 2.987 2.979

FSSE (0.934) (0.670) (0.416) (0.963) (0.480) (0.363) (0.735) (0.565) (0.316)

RMSE (0.945) (0.673) (0.416) (0.964) (0.484) (0.364) (0.737) (0.565) (0.317)

AASE (0.677) (0.471) (0.331) (0.599) (0.367) (0.264) (0.476) (0.323) (0.225)

Panel B. Volatility components (�kk ¼ 5)

�kk
0 ¼ 1 2 3 4 5 6 7 8

Times chosen (max ¼ 400) 0 0 2 81 299 13 5 0

Mean[ln L(�kk
0
)ÿ ln L(�kk ¼ 5)] ÿ425.30 ÿ118.44 ÿ42.53 ÿ13.07 0 ÿ0.89 ÿ1.17 ÿ0.97

(5.37) (1.70) (1.15) (0.54) ---- (0.06) (0.09) (0.02)

Panel A is based on J ¼ 400 simulated paths for each column. All simulations are based on a multifractal

process with �kk ¼ 8. The columns are distinguished by combinations of m0 2 {1.3, 1.4, 1.5} and sample

lengths of T1 ¼ 2500, T2 ¼ 5000, and T3 ¼ 10,000. Parameters that are fixed across all simulations are

s¼ 1, g�kk ¼ 0.95, and b ¼ 3. These parameters provide a reasonable approximation to values that are

estimated on exchange rate data in future sections of the article. In each set of four rows, the first row is the

average MLE parameter value over the J simulated paths. In the remaining rows, FSSE denotes finite

sample standard error, RMSE the root mean squared error, and AASE the average asymptotic standard

error. To derive AASE, the asymptotic variance is calculated for each j 2 {1, . . . , J} path from the inverse of

the information matrix and the average is taken over the J simulations. Panel B is based on 400 simulated

paths of length 10,000 from a process with five volatility components and parameters (m0, s, b, g�kk) ¼ (1.5,

0.5, 8, 0.75). For each path, parameters are estimated for MSM(�kk
0
), �kk

0 2 {1, . . . , 8}. The first row reports the

number of times each value of �kk
0

has highest likelihood. The second row shows the average likelihood

difference relative to the true process with �kk ¼ 5. The final row gives in parentheses simulation standard

errors, which are all small relative to the reported mean differences.

CALVET & FISHER | How to Forecast Long-Run Volatility 59



true value �kk¼ 5 is selected in most cases. Of the remaining possibilities, only �kk 0 ¼ 4

is selected more than a nominal number of times. We explain this by observing

that the most persistent volatility component has a frequency comparable to the

sample length. In some sample paths, few or no shifts occur in the most persistent

component, and the process MSM(�kk 0 ¼ 4) then produces a higher likelihood. This

result reflects the general fact that low-frequency events may be difficult to detect

in a finite sample (the peso problem). As a result, the estimation method on
average slightly underpredicts the number of components, but errors in �kk of

more than one component are very unlikely.

We also report in Table 1, panel B, the mean difference in optimized like-

lihoods between the MSM(�kk 0) and true MSM(�kk¼ 5) specifications.9 All of the mean

differences are negative, again confirming that the estimation method correctly

identifies the true value of �kk. Interestingly, having too few frequencies causes on

average a larger penalty in the likelihood function than having too many. In

empirical work we should thus expect a rapid increase in the likelihood as com-
ponents are added, followed by flattening and slow decline. Nonetheless, a speci-

fication with too many components is very unlikely to give a higher likelihood. We

can thus be confident that the selection of a large �kk in the empirical work will not

arise from estimation problems but should instead be attributed to heterogeneity

in volatility shocks. Overall we conclude that ML estimation of the parameters and

the frequency number �kk produces reliable results in finite samples.

3 EMPIRICAL RESULTS

Using a binomial specification for the multiplier M, we apply ML estimation to
four exchange rate series and obtain preferred specifications with a large number

of volatility frequencies.

3.1 Exchange Rate Data

The empirical analysis uses daily exchange rate data for the deutsche mark (DEM),

Japanese yen (JPY), British pound (GBP), and Canadian dollar (CAD), all against

the U.S. dollar. The data consist of daily prices reported at noon by the Federal

Reserve Bank of New York.10 The fixed exchange rate system broke down in early

1973, and the DEM, JPY, and GBP series accordingly begin on June 1, 1973. The
CAD series starts a year later (June 1, 1974) because the Canadian currency was

held essentially at parity with the U.S. dollar for several months after the demise of

Bretton Woods. The deutsche mark was replaced by the euro at the beginning of

1999. The DEM data thus ends on December 31, 1998, while the other three series

run until June 30, 2002. Overall the series contains 6420 observations for the

deutsche mark, 7049 observations for the Canadian dollar, and 7299 observations

for the yen and the pound.

9 Standard errors due to simulation are reported in parentheses and show that the simulated means are

relatively accurate.
10 More specifically, the data consist of buying rates for wire transfers at 12:00 P.M. Eastern time.
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Figure 2 plots the daily returns of each series. Consistent with earlier studies,

we observe apparent volatility clustering on a range of frequencies. For each

series, we compute in Table 2 the standard deviation of returns over the entire

sample and over four subsamples of equal length. We observe that the sample
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Figure 2 Exchange rate data. This figure shows the daily log-price differences of the four
exchange rate series.
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standard deviation varies quite substantially across subperiods, which is consis-

tent with the low-frequency regime shifts in MSM.

3.2 ML Estimation Results

Table 3 reports ML estimation results for all four currencies. The columns of the

table correspond to the number of frequencies �kk varying from 1 to 10. The first

column is a standard Markov switching model with only two possible values for

volatility. As �kk increases, the number of states increases at the rate 2
�kk. There are

thus more than 1000 states when �kk¼ 10.
We begin by examining the DEM data. The multiplier parameter m̂m0 tends to

decline with �kk: with a larger number of components, less variability is required in

each Mkt to match the fluctuations in volatility exhibited by the data. The estimates

of ŝs vary across �kk with no particular pattern. Standard errors of ŝs increase with �kk,

consistent with the idea that long-run averages are difficult to identify in models

permitting long volatility cycles. We next examine the frequency parameters ĝg�kk

and b̂b. When �kk¼ 1, the single multiplier has a duration slightly less than two

weeks. As �kk increases, the switching probability of the highest-frequency multi-
plier increases until a switch occurs about once a day for large �kk. At the same time,

the estimate b̂b decreases steadily with �kk. When �kk¼ 10, we infer from Equation (2)

that the lowest-frequency multiplier has a duration approximately equal to

10 years, or about one-third the sample size. Thus, as �kk increases, the range of

frequencies spreads out while the spacing between frequencies becomes tighter.

The other currencies generate parameter estimates with similar properties. In

all cases, m̂m0 tends to decrease with �kk. The values of m̂m0, and thus the importance of

stochastic volatility, are largest for JPY and GBP and smallest for CAD. Variability
across �kk in the estimates of ŝs is also greatest for JPY and GBP and least for CAD. As
�kk increases, the most transitory multiplier switches more often and the spacing

between frequencies becomes tighter for all currencies. The spacing is widest for

JPY and GBP and tightest for CAD. We observe correspondingly that the most

Table 2 FX return variability.

Standard deviation of returns

Entire sample By subperiod

1 2 3 4

DEM 0.664 0.587 0.716 0.708 0.635

JPY 0.657 0.545 0.640 0.646 0.775

GBP 0.607 0.486 0.724 0.699 0.473

CAD 0.274 0.220 0.255 0.284 0.327

For each dataset, the first column shows the standard deviation of returns over the entire sample period.

In the next four columns, each data series is broken into quarters and the same statistic is calculated for

each subperiod. The results show that the variability of return variance is substantial even at very

low frequencies.
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persistent multiplier has the longest duration for JPY at approximately three times

the sample size and the smallest for CAD at approximately one-tenth the sample

size. All standard errors are roughly consistent with the magnitudes obtained in

our Monte Carlo simulations.

For large values of �kk, the estimated MSM(�kk) processes generate substantial

outliers despite having finite moments of every order, as is now shown. For each

currency we use the estimated process with �kk¼ 10 frequencies to generate 10,000
paths of the same length as the data and compute a Hill tail index a for each

simulated path. Basing the index on 100 order statistics, the empirical tail index

and the average a in the simulated samples are equal to 4.74 and 4.34 (DEM), 3.91

and 3.75 (JPY), 4.59 and 4.03 (GBP), and 4.40 and 4.79 (CAD), respectively.

Furthermore, for all currencies, we cannot at the 10% level reject equality of the

simulated and empirical tail statistics. This result is caused by the high-frequency

variations in volatility in the estimated models. The distribution of returns in

MSM is a mixture of Gaussians, which has finite moments of every order. With
the highest-frequency multipliers taking new values almost daily, this mixture

appears to be more than sufficient to capture the tail characteristics of the data,

even in a sample containing 30 years of daily observations.

Finally, we examine the behavior of the log-likelihood function as the number

of frequencies �kk increases from 1 to 10. For each currency, the likelihood goes up

substantially at low �kk, and in most cases continues to increase at a decreasing rate.

The only exception to the monotonic increase in likelihood occurs in the DEM

series, for which the likelihood reaches a peak at �kk¼ 7. In all other cases the
likelihood reaches a maximum at �kk¼ 10. This behavior of the likelihood confirms

one of the main premises of the multifractal approach: fluctuations in volatility

occur with heterogeneous degrees of persistence, and explicitly incorporating a

larger number of frequencies results in a better fit.

3.3 Model Selection

We now examine the statistical significance of the differences in likelihoods across
estimated MSM(�kk) processes. Consider two models MSM(�kk) and MSM(�kk 0), �kk 6¼ �kk 0,
with respective densities f and g. The processes are nonnested and have log-

likelihood difference

ffiffiffiffi
T
p
ðln L

f
T ÿ ln L

g
TÞ¼

1ffiffiffiffi
T
p

XT

t¼1

ln
fðxt j x1, . . . , xtÿ1Þ
gðxt j x1, . . . , xtÿ1Þ

:

Consider the null hypothesis that the models have identical unconditional expected

log-likelihoods. When the observations xt are i.i.d., Vuong (1989) shows that the

difference ln L
f
T ÿ ln L

g
T is asymptotically normal under the null.11 In addition, the

variance of this difference is consistently estimated by the sample variance of

the addends ln½ fðxt j x1, . . . , xtÿ1Þ=gðxt j x1, . . . , xtÿ1Þ�: Since the observations {xt} are

11 See the appendix for a more detailed discussion of Vuong tests.
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Table 3 Maximum likelihood results.

�kk ¼ 1 2 3 4 5 6 7 8 9 10

Deutsche mark/U.S. dollar

m̂m0 1.654 1.590 1.555 1.492 1.462 1.413 1.380 1.353 1.351 1.326

(0.013) (0.012) (0.013) (0.013) (0.012) (0.013) (0.012) (0.011) (0.013) (0.015)

ŝs 0.682 0.651 0.600 0.572 0.512 0.538 0.547 0.550 0.674 0.643

(0.012) (0.018) (0.014) (0.016) (0.018) (0.026) (0.021) (0.025) (0.035) (0.073)

ĝg�kk 0.075 0.107 0.672 0.714 0.751 0.858 0.932 0.974 0.966 0.959

(0.011) (0.022) (0.151) (0.096) (0.106) (0.128) (0.071) (0.042) (0.065) (0.066)

b̂b -- 8.01 21.91 10.42 7.89 5.16 4.12 3.38 3.29 2.70

(2.58) (7.30) (1.92) (1.31) (0.76) (0.48) (0.36) (0.47) (0.36)

ln L ÿ5920.86 ÿ5782.96 ÿ5731.78 ÿ5715.31 ÿ5708.25 ÿ5706.91 5704.48 ÿ5704.77 ÿ5704.86 ÿ5705.09

Japanese yen/U.S. dollar

m̂m0 1.797 1.782 1.693 1.654 1.640 1.573 1.565 1.513 1.475 1.448

(0.011) (0.009) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011)

ŝs 0.630 0.538 0.566 0.462 0.709 0.642 0.518 0.514 0.486 0.461

(0.011) (0.009) (0.017) (0.013) (0.023) (0.023) (0.018) (0.020) (0.026) (0.036)

ĝg�kk 0.199 0.345 0.312 0.697 0.778 0.899 0.897 0.975 0.995 0.998

(0.019) (0.033) (0.054) (0.080) (0.076) (0.060) (0.057) (0.034) (0.010) (0.006)

b̂b -- 134.20 12.46 15.58 16.03 8.07 7.46 5.65 4.43 3.76

(48.27) (2.18) (2.67) (2.67) (1.03) (0.89) (0.78) (0.53) (0.45)

ln L ÿ6451.80 ÿ6102.18 ÿ5959.72 ÿ5900.67 ÿ5882.93 ÿ5871.35 ÿ5867.88 ÿ5863.20 ÿ5863.01 ÿ5862.68

British pound/U.S. Dollar

m̂m0 1.716 1.671 1.648 1.609 1.579 1.534 1.503 1.461 1.428 1.403

(0.012) (0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.011) (0.011) (0.009)

ŝs 0.609 0.590 0.513 0.467 0.421 0.468 0.389 0.384 0.374 0.370

(0.009) (0.011) (0.016) (0.016) (0.017) (0.019) (0.014) (0.015) (0.022) (0.022)

ĝg�kk 0.110 0.222 0.278 0.645 0.637 0.784 0.811 0.958 0.964 0.982
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�kk ¼ 1 2 3 4 5 6 7 8 9 10

(0.017) (0.034) (0.052) (0.080) (0.075) (0.078) (0.083) (0.052) (0.043) (0.031)

b̂b ---- 19.90 14.29 12.51 11.02 8.32 6.72 5.23 4.08 3.45

(5.19) (2.58) (2.00) (1.74) (1.15) (0.91) (0.69) (0.41) (0.32)

ln L ÿ5960.18 ÿ5724.37 ÿ5622.73 ÿ5570.02 ÿ5537.80 ÿ5523.64 ÿ5516.89 ÿ5515.37 ÿ5515.28 ÿ5514.94

Canadian dollar/U.S. dollar

m̂m0 1.646 1.556 1.474 1.435 1.386 1.374 1.338 1.319 1.296 1.278

(0.012) (0.012) (0.014) (0.015) (0.012) (0.013) (0.012) (0.016) (0.013) (0.012)

ŝs 0.280 0.278 0.293 0.263 0.251 0.295 0.282 0.262 0.259 0.262

(0.005) (0.006) (0.014) (0.009) (0.010) (0.011) (0.013) (0.017) (0.015) (0.021)

ĝg�kk 0.064 0.109 0.129 0.171 0.441 0.524 0.593 0.594 0.631 0.644

(0.009) (0.016) (0.040) (0.062) (0.153) (0.128) (0.145) (0.151) (0.155) (0.158)

b̂b ---- 10.92 4.76 3.95 4.02 4.08 3.11 2.72 2.35 2.11

(3.12) (1.15) (0.83) (0.76) (0.58) (0.39) (0.39) (0.25) (0.18)

ln L ÿ271.01 ÿ129.80 ÿ105.16 ÿ91.32 ÿ88.41 ÿ84.73 ÿ 84.03 ÿ83.40 ÿ83.06 ÿ83.00

This table shows ML estimation results for the binomial multifractal model for all four exchange rate series. Columns correspond to the number of frequencies �kk in

the estimated model. The likelihood function increases monotonically in the number of volatility frequencies for all datasets except DEM, which obtains a maximum

at �kk ¼ 7. Asymptotic standard errors are in parentheses.
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typically not i.i.d. in financial applications, we construct in the appendix a HAC-

adjusted version of the Vuong test. Our discussion is a simplified version of the

broader approach recently proposed by Rivers and Vuong (2002).

For each �kk 2 {1, . . . ,9}, we test in Table 4 the null hypothesis that MSM(�kk) and

MSM(10) fit the data equally well. Since HAC-adjusted tests tend to perform

poorly in small samples [see, e.g., Andrews (1991), Andrews and Monahan
(1992), and den Haan and Levin (1997)], we compute t-ratios and one-sided

p-values using both the original and the HAC-adjusted methods. For �kk 2 {1, 2, 3},

the log-likelihood difference is significant at the 1% level in the nonadjusted case

(Table 4, panel A) and at the 5% level in the HAC case (Table 4, panel B). This is

strong evidence that MSM(10) significantly outperforms models with one to three

frequencies. For �kk 2 {4, 5}, we reject the null at the 5% (nonadjusted) and 20%

(HAC-adjusted) levels in almost all cases. These results represent rather substan-

tial evidence that MSM(10) outperforms models with four or five frequencies.
Lower significance levels are obtained for larger values of �kk, and the overall

conclusion is that the MSM model works better for larger �kk. For this reason, and

consistency in the remaining analysis, we henceforth focus on the MSM(�kk¼ 10)

process for all currencies.

Table 4 Multifractal model selection.

�kk ¼ 1 2 3 4 5 6 7 8 9

Panel A. Vuong (1989) test

Mark ÿ8.655 ÿ5.523 ÿ2.972 ÿ1.858 ÿ0.688 ÿ0.733 0.341 0.204 0.337

(0.000) (0.000) (0.001) (0.032) (0.246) (0.232) (0.633) (0.581) (0.632)

Yen ÿ13.067 ÿ8.406 ÿ5.342 ÿ3.154 ÿ2.156 ÿ1.192 ÿ1.108 ÿ0.180 ÿ0.162

(0.000) (0.000) (0.000) (0.001) (0.016) (0.117) (0.134) (0.429) (0.436)

Pound ÿ11.810 ÿ8.337 ÿ6.267 ÿ4.360 ÿ2.984 ÿ1.334 ÿ0.408 ÿ0.149 ÿ0.236

(0.000) (0.000) (0.000) (0.000) (0.001) (0.089) (0.342) (0.441) (0.407)

Canada ÿ8.475 ÿ4.421 ÿ3.289 ÿ1.795 ÿ2.108 ÿ0.862 ÿ0.825 ÿ0.472 ÿ0.158

(0.000) (0.000) (0.000) (0.036) (0.017) (0.194) (0.205) (0.318) (0.437)

Panel B. HAC-adjusted Vuong test

Mark ÿ4.285 ÿ3.033 ÿ1.683 ÿ1.101 ÿ0.402 ÿ0.424 0.197 0.120 0.194

(0.000) (0.001) (0.046) (0.135) (0.344) (0.336) (0.578) (0.548) (0.577)

Yen ÿ5.219 ÿ4.262 ÿ2.865 ÿ1.645 ÿ1.224 ÿ0.648 ÿ0.663 ÿ0.105 ÿ0.098

(0.000) (0.000) (0.002) (0.050) (0.111) (0.259) (0.254) (0.458) (0.461)

Pound ÿ3.788 ÿ2.804 ÿ2.803 ÿ2.195 ÿ1.759 ÿ0.779 ÿ0.242 ÿ0.088 ÿ0.137

(0.000) (0.003) (0.003) (0.014) (0.039) (0.218) (0.404) (0.465) (0.446)

Canada ÿ4.237 ÿ2.383 ÿ1.789 ÿ1.019 ÿ1.150 ÿ0.480 ÿ0.445 ÿ0.276 ÿ0.091

(0.000) (0.009) (0.037) (0.154) (0.125) (0.316) (0.328) (0.391) (0.464)

This table reports t-ratios and one-sided p-values for the log-likelihood difference of the model in each

column against the multifractal with 10 frequencies. Panel A uses the Vuong (1989) methodology and panel

B adjusts for heteroskedasticity and autocorrelation using Newey and West (1987, 1994). A low p-value

indicates that the corresponding model would be rejected in favor of the multifractal with 10 frequencies.
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4 COMPARISON WITH ALTERNATIVE MODELS

This section compares the multifractal model with GARCH(1,1), Markov switch-

ing GARCH (MS-GARCH), and fractionally integrated GARCH (FIGARCH). We

show in subsections 4.1 and 4.2 that MSM outperforms GARCH and MS-GARCH

both in- and out-of-sample. The multifractal is then compared with FIGARCH in

subsection 4.3 to assess the connection between long memory and forecasting

performance.

4.1 In-Sample Comparison

We consider alternative processes of the form xt¼ h
1=2
t et, where ht is the condi-

tional variance of xt at date t ÿ 1, and {et} are i.i.d. Student innovations with unit

variance and n degrees of freedom (d.f.). GARCH(1,1) assumes the recursion

htþ1¼vþ a«2
t þ bht. MS-GARCH combines short-run autoregressive dynamics

with low-frequency regime shifts [Gray (1996), Klaassen (2002)]. A latent state

st 2 {1, 2} follows a first-order Markov process with transition probabilities pij¼
P (stþ1¼ j j st¼ i). In every period the econometrician observes the return xt but not

the latent st. For i¼ {1, 2}, let htþ1(i)¼ vart(xtþ1 j stþ1¼ i) denote the variance of xtþ1

conditional on past returns fxtgt
s¼1 and stþ1¼ i. The quantity ht is latent in every

period, and the econometrician can similarly define Et[ht(st) j stþ 1¼ i], the expec-

tation of ht conditional on stþ1¼ i and past returns. Klaassen (2002) assumes the

conditional dynamics:

htþ1ðiÞ ¼ vi þ ai«
2
t þ biEt½htðstÞ j stþ1 ¼ i�: ð5Þ

The equation conditions volatility on a larger information set than the Gray

specification: htþ1ðiÞ¼vi þ ai«
2
t þ biEtÿ1htðstÞ. We prefer Equation (5) for two

reasons. First, Klaassen shows that his model provides better forecasts for three

of the exchange rates considered in this article (DEM, JPY, and GBP), and attri-

butes these improvements to finer conditioning. Second, the Klaassen version

improves on Gray (1996) by permitting analytical multistep forecasting.

We report in Table 5 the ML estimates of GARCH and MS-GARCH. The

coefficient 1/n is the inverse of the degrees of freedom in the Student distribution.
This convenient renormalization has been frequently used in the literature [e.g.,

Bollerslev (1987)]. Each coefficient si, i¼ 1, 2, represents the standard deviation of

returns conditional on the volatility state: s2
i ¼vi=ð1ÿ ai ÿ biÞ. These coefficients

are easier to interpret across models than the intercepts vi. As shown in Table 6,

the multifractal has a higher likelihood than GARCH(1,1) for all exchange rates,

even though both processes have the same number of parameters. Note that

GARCH(1,1) approximately matches the likelihoods obtained by MSM with

only three or four frequencies. The multifractal model thus gives an improved
fit over GARCH(1,1) in-sample.

The MS-GARCH model uses nine parameters as compared to four with either

GARCH or MSM. Thus, although MS-GARCH has higher likelihoods than either

GARCH or MSM, we obtain a different ordering when using the Schwartz
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Table 5 Alternative processes.

Regime 1 Regime 2

1/n s1 a1 b1 p11 s2 a2 b2 p22 ln L

Deutsche mark/U.S. dollar

GARCH 0.1929 1.5539 0.0879 0.9108 ÿ5730.52

(0.011) (0.405) (0.009) (0.009)

MS-GARCH 0.2041 1.0749 0.2048 0.7896 0.9998 1.3145 0.0718 0.9241 0.9999 ÿ5694.78

(0.011) (0.288) (0.023) (0.024) (0.0003) (0.282) (0.010) (0.011) (0.0002)

Japanese yen/U.S. dollar

GARCH 0.2290 0.1638 0.0652 0.9348 ÿ5965.07

(0.0002) (0.059) (0.006) (0.006)

MS-GARCH 0.2632 0.4443 0.3420 0.6500 0.9999 0.9639 0.0650 0.9227 0.9999 ÿ5833.59

(0.012) (0.137) (0.040) (0.040) (0.0002) (0.121) (0.010) (0.013) (0.0002)

British pound/U.S. dollar

GARCH 0.2007 0.2365 0.0681 0.9319 ÿ5562.00

(0.008) (0.070) (0.005) (0.005)

MS-GARCH 0.2202 0.8423 0.3653 0.6051 0.9860 0.9343 0.0587 0.9365 0.9986 ÿ5492.44

(0.009) (0.013) (0.053) (0.056) (0.005) (0.012) (0.008) (0.008) (0.0003)

Canadian dollar/U.S. dollar

GARCH 0.1528 0.3108 0.0810 0.9108 ÿ96.03

(0.037) (0.008) (0.008) (0.010)

MS-GARCH 0.1385 0.2046 0.0584 0.9361 0.9896 0.2972 0.2587 0.2925 0.9415 ÿ73.51

(0.011) (0.035) (0.009) (0.010) (0.004) (0.025) (0.074) (0.215) (0.023)

This table shows ML estimation results for alternative processes for the four exchange rate series. Asymptotic standard errors are in parentheses. For the

GARCH(1,1) model, the parameter estimates for JPY/USD and GBP/USD are on the boundary of the restriction a þ b � 1 ÿ e, where e ¼ 10ÿ 5.
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BIC criterion. In particular, the multifractal model is then indistinguishable from

MS-GARCH in the GBP data, and is preferred for DEM and CAD.

As suggested by Vuong (1989), we evaluate the statistical significance of BIC

differences. The last two columns of Table 6 test the GARCH and MS-GARCH

models against MSM under this metric.12 We again give p-values for both the

original version of the test as well as a HAC-adjusted variant. Under the original

version, the in-sample performance of MSM over GARCH(1,1) is highly signifi-

cant for DEM, JPY, and GBP, and somewhat significant for CAD. The HAC
adjustments produce analogous, but slightly weaker results. For DEM and CAD,

there is some evidence that the multifractal model is a better performer than MS-

GARCH, but the significance is marginal at best. Overall the in-sample analysis

suggests that the multifractal matches the performance MS-GARCH and signifi-

cantly outperforms GARCH(1,1).

Table 6 In-sample model comparison.

BIC p-value vs. multifractal

No. of

parameters ln L BIC

Vuong

(1989)

HAC

Adj

Deutsche mark/U.S. dollar

Binomial multifractal 4 ÿ5705.09 1.7830

GARCH 4 ÿ5730.52 1.7910 0.005 0.071

MS-GARCH 9 ÿ5694.78 1.7866 0.140 0.248

Japanese yen/U.S. dollar

Binomial multifractal 4 ÿ5862.68 1.6115

GARCH 4 ÿ5965.07 1.6396 0.000 0.008

MS-GARCH 9 ÿ5833.59 1.6097 0.619 0.572

British pound/U.S. dollar

Binomial multifractal 4 ÿ5514.94 1.5162

GARCH 4 ÿ5562.00 1.5291 0.004 0.070

MS-GARCH 9 ÿ5492.44 1.5162 0.505 0.503

Canadian dollar/U.S. dollar

Binomial multifractal 4 ÿ83.00 0.0286

GARCH 4 ÿ96.03 0.0323 0.072 0.200

MS-GARCH 9 ÿ73.51 0.0322 0.092 0.235

This table summarizes information about in-sample goodness-of-fit for the three models. The Bayesian

information criterion is given by BIC ¼ Tÿ1(ÿ2 ln L þ NP ln T). The sample lengths are 6419 for DEM/

USD, 7298 for JPY/USD and GBP/USD, and 7048 for CAD/USD. The last two columns give p-values

from a test that the corresponding model dominates the multifractal model by the BIC. The first value uses

the Vuong (1989) methodology and the second value adjusts the test for heteroscedasticity and

autocorrelation. A low p-value indicates that the corresponding model would be rejected in favor of the

multifractal model.

12 Note that a BIC test of GARCH against the multifractal model is identical to a likelihood test, since both

have the same number of parameters.
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4.2 Out-of-Sample Forecasts

We now investigate the out-of-sample performance of the competing models over

forecasting horizons ranging from 1 to 50 days. For each currency we estimate the
three processes on the beginning of the series and use the last 12 years of data (or

approximately half the sample) for out-of-sample comparison.

Table 7 reports results of one-day forecasts. The first two columns correspond

to the coefficients g0 and g1 from the Mincer-Zarnowitz ordinary least squares

(OLS) regressions x2
tþ1 ¼ g0 þ g1Etx

2
tþ1 þ ut of squared returns on a constant and

one-day forecasts. These regressions are common in the financial econometrics

literature [e.g., Pagan and Schwert (1990); West and Cho (1995); Andersen,

Bollerslev, and Meddahi (2002)], and unbiased forecasts would imply g0¼ 0 and
g1¼ 1. We adjust the standard errors of g0 and g1 for parameter uncertainty as in

West and McCracken (1998), and for HAC effects using the weighting and lag

selection methodology of Newey and West (1987, 1994).

With the multifractal, the estimated intercept ĝg0 is slightly positive and the

slope ĝg1 is slightly less than one for all currencies. These small biases, however, are

not statistically significant. In particular, the hypothesis g0¼ 0 is accepted at the 5%

confidence level for all currencies, and g1¼ 1 is accepted at the 5% level for JPY

and CAD and at the 1% level for DEM and GBP. The Mincer-Zarnowitz regres-
sions thus show little evidence of bias in MSM forecasts.

The point estimates ĝg0 and ĝg1 are slightly poorer with GARCH(1,1) than with

the multifractal. All intercepts are more positive, and the slopes are further away

from one for three currencies. The biases are also statistically significant. The

hypotheses g0¼ 0 and g1¼ 1 are rejected at the 5% level in seven of eight cases.

Since 0< ĝg1< 1, these results suggest that GARCH forecasts are too variable and

can be improved by the linear smoothing ĝg0 þ ĝg1Etx
2
tþ1. In contrast, Markov

switching GARCH improves on the out-of-sample performance of GARCH(1,1).
We accept that g0¼ 0 at the 5% confidence level for all currencies, and that g1¼ 1 at

the 1% level for DEM, GBP, and CAD. Furthermore, the regression estimates are

best with MS-GARCH for two currencies (DEM and GBP) and with the multifractal

for the other two. MSM and MS-GARCH thus seem to perform quite similarly out-

of-sample at the one-day horizon. We also report in Table 7 two standard measures

of goodness-of-fit: the mean squared error (MSE) and the restricted R2 coefficient.13

The multifractal produces the best forecasting R2 for DEM and JPY. On the other

hand, GARCH produces better results for the GBP and MS-GARCH for the CAD.
To summarize the one-day forecast results, the multifractal model appears to

slightly dominate GARCH(1,1) and to give results comparable to MS-GARCH.

Multistep forecasts provide stronger empirical differences between the three

models. We report in Table 8 the results for 20-day forecasts, which are represen-

tative of longer horizons. Since the data contain only business days, this frequency

corresponds to about a month of calendar time. Following Andersen and Bollerslev

13 The MSE quantifies forecast errors in the out-of-sample period: Lÿ1
PT

t¼TÿLþ1ðx2
t ÿ Etÿ1x2

t Þ
2. The coeffi-

cient of determination is defined by R2¼ 1 ÿ MSE/TSS, where TSS is the out-of-sample variance of

squared returns: TSS ¼ Lÿ1
PT

t¼TÿLþ1ðx2
t ÿ

PT
i¼TÿLþ1 x2

i =LÞ2:
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(1998) and Klaassen (2002), the dependent variable is the sum of squared daily

returns �tþ19
s¼t x2

s over the 20-day period. Because the average size of returns inc-

reases with the sampling interval, the estimated intercepts ĝg0 are larger in Table 8

than in Table 7. For each currency, the multifractal produces point estimates of

g0 and g1 that are closest to their preferred values. We also accept the hypotheses

Table 7 One-day forecasts.

Mincer-Zarnowitz

Restricted

g0 ¼ 0, g1 ¼ 1

g0 g1 MSE R2

Deutsche mark/U.S. dollar

Binomial multifractal 0.098 0.703 0.7263 0.041

(0.072) (0.126)

GARCH 0.153 0.622 0.7304 0.035

(0.061) (0.105)

MS-GARCH 0.042 0.740 0.7296 0.037

(0.080) (0.130)

Japanese yen/U.S. dollar

Binomial multifractal 0.028 0.772 1.6053 0.053

(0.090) (0.117)

GARCH 0.172 0.668 1.6137 0.048

(0.075) (0.105)

MS-GARCH 0.080 0.709 1.6141 0.048

(0.084) (0.109)

British pound/U.S. dollar

Binomial multifractal 0.053 0.715 0.5081 0.057

(0.049) (0.100)

GARCH 0.085 0.751 0.4980 0.076

(0.044) (0.098)

MS-GARCH 0.017 0.814 0.4997 0.072

(0.051) (0.108)

Canadian dollar/U.S. dollar

Binomial multifractal 0.015 0.905 0.0345 0.051

(0.016) (0.156)

GARCH 0.033 0.679 0.0348 0.042

(0.012) (0.111)

MS-GARCH 0.025 0.785 0.0344 0.055

(0.013) (0.124)

This table gives out-of-sample forecasting results for the three models. The first two columns correspond

to parameter estimates from the Mincer-Zarnowitz OLS regression e2
tþ1 ¼ g0 þ g1Etðe2

tþ1Þ þ ut. For an unbiased

forecast we expect g0¼ 0 and g1¼ 1. Asymptotic standard errors in parentheses are corrected for

heteroscedasticity and autocorrelation using the method of Newey and West (1987, 1994) and for parameter

uncertainty using the method of West and McCracken (1998). MSE is the mean squared forecast error, and R2

is one less the MSE divided by the sum of squared demeaned squared returns in the out-of-sample period.
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g0¼ 0 and g1¼ 1 in all cases at the 5% confidence level. In contrast, for the other

models, each currency leads to a strong rejection of either one hypothesis (MS-

GARCH) or both (GARCH) at the 5% confidence level. The reported MSE and

R2 further confirm that the multifractal provides the best 20-day forecasts for

all currencies. The difference is particularly large in the case of the DEM and JPY.

Table 8 Twenty-day forecasts.

Mincer-Zarnowitz

Restricted

g0 ¼ 0, g1 ¼ 1

g0 g1 MSE R2

Deutsche mark/U.S. dollar

Binomial multifractal 1.749 0.706 37.12 0.135

(1.649) (0.150)

GARCH 4.474 0.443 49.24 ÿ0.147

(1.108) (0.092)

MS-GARCH 1.934 0.568 50.66 ÿ0.180

(1.577) (0.118)

Japanese yen/U.S. dollar

Binomial multifractal ÿ1.248 0.909 76.95 0.205

(2.160) (0.155)

GARCH 5.311 0.488 99.15 ÿ0.024

(1.233) (0.086)

MS-GARCH 2.148 0.573 103.29 ÿ0.067

(1.776) (0.108)

British pound/U.S. dollar

Binomial multifractal 0.330 0.792 27.35 0.250

(1.114) (0.120)

GARCH 2.702 0.606 29.61 0.188

(0.760) (0.085)

MS-GARCH 0.641 0.730 29.08 0.203

(1.021) (0.105)

Canadian dollar/U.S. dollar

Binomial multifractal ÿ0.038 1.179 1.6339 0.217

(0.385) (0.221)

GARCH 0.676 0.707 1.6615 0.204

(0.243) (0.121)

MS-GARCH 0.630 0.754 1.6719 0.199

(0.270) (0.140)

This table gives out-of-sample forecasting results for the three models. The first two columns correspond to

parameter estimates from the Mincer-Zarnowitz OLS regression e2
tþ1 ¼ g0 þ g1Etðe2

tþ1Þ þ ut. For an unbiased

forecast we expect g0¼ 0 and g1¼ 1. Asymptotic standard errors in parentheses are corrected for hetero-

scedasticityandautocorrelationusingthemethodofNewey and West (1987, 1994) and for parameter uncertainty

using the method of West and McCracken (1998). MSE is the mean squared forecast error and R2 is one less the

MSE divided by the sum of squared demeaned squared returns in the out-of-sample period.
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The R2 coefficient is 13.5% and 20.5% for DEM and JPY, respectively, with the

multifractal, while negative values are produced by GARCH and MS-GARCH.14

Table 9 reports summary forecasting results and significance tests for horizons

of 1, 5, 10, 20, and 50 days. Panel A shows the forecasting R2 for each model. For the

DEM and the JPY, the multifractal model is quite dominant at the 5-day horizon, and

increasingly outperforms other models at longer horizons. For the GBP and the

CAD, the multifractal only dominates at horizons of 20 days or more. Panel B
analyzes the statistical significance of these results. At horizons of 50 days, the

multifractal model outperforms the other models very significantly for the DEM,

GBP, and JPY, and at a moderate or marginal significance level for CAD. The sup-

erior forecasts of the multifractal are also highly significant at horizons of 10 and 20

days for the DEM, and somewhat strong at the 20-day horizons for the JPY and GBP.

These results are quite impressive for the multifractal model. Although this is

the first forecasting evaluation of MSM, and only the simplest binomial specifica-

tion has been investigated, our process compares well with established models.
In particular, GARCH(1,1) is often viewed as a standard benchmark that is very

difficult to outperform in forecasting exercises [e.g., West and Cho (1995);

Andersen and Bollerslev (1998); Hansen and Lunde (2001)]. Our results show

that MSM matches or slightly outperforms GARCH and MS-GARCH at short

horizons and substantially dominates these models at longer horizons.

4.3 Comparison with FIGARCH

The out-of-sample results suggest that MSM accurately captures the dependence

structure of volatility at long horizons. Next we investigate whether a fractionally
integrated volatility process also provides good long-range forecasts. We consider

the FIGARCH (1, d, 0) specification of Baillie, Bollerslev, and Mikkelsen (1996).15

The return process is given by xt ¼ h1=2
t et, where {et} are i.i.d. Student innovations

with unit variance and n degrees of freedom. The conditional variance ht satisfies

htþ1¼vþ bðht ÿ x2
t Þ þ ½1ÿ ð1ÿ LÞd�x2

t ,

where L denotes the lag operator and d 2 [0, 1] the long-memory parameter.

FIGARCH is well defined, strictly stationary, and ergodic when v � 0 and jbj < 1.

For every d > 0, the process is not covariance-stationary because the uncondi-
tional variance is infinite, as discussed in Baillie, Bollerslev, and Mikkelsen (1996).

We estimate FIGARCH by ML and report the corresponding results in

Table 10, panel A.16 For every currency, FIGARCH has the lowest in-sample

14 The multifractal yields a higher R2 for 20-day returns than for daily returns. This stems from the fact that

our measure of 20-day volatility is a sum of daily squared returns
Ptþ19

s¼t x2
s . As in Andersen and

Bollerslev (1998), reduced noise in the volatility measure leads to an increase in explanatory power.
15 In unreported work, FIGARCH(1, d, 0) was not rejected in favor of more general FIGARCH(p, d, q)

specifications for any of the exchange rate series.
16 We note that for the JPY, the estimated value of v¼ 0 is on the boundary. For standard GARCH, this

parameter determines the unconditional volatility level. Since in FIGARCH unconditional volatility is

infinite, interpretation of this result is more problematic. We can view our reported estimates for the JPY

as corresponding to an earlier specification with v¼ 0 introduced by Robinson (1991).
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likelihood of all estimated models. In particular, the reported p-values indicate a

difference in likelihood relative to MSM that is statistically significant at the 1%

level for the JPY and at the 10% level for the other currencies. MSM thus outper-

forms FIGARCH in-sample.

Table 9 Forecast summary, multiple horizons.

Horizon (days)

1 5 10 20 50

Panel A. Restricted R2

Deutsche mark/U.S. dollar

Binomial multifractal 0.041 0.124 0.160 0.135 0.038

GARCH 0.035 0.069 0.033 ÿ0.147 ÿ0.761

MS-GARCH 0.039 0.072 0.030 ÿ0.180 ÿ1.137

Japanese yen/U.S. dollar

Binomial multifractal 0.053 0.113 0.142 0.205 0.213

GARCH 0.048 0.054 0.011 ÿ0.024 ÿ0.358

MS-GARCH 0.048 0.044 ÿ0.009 ÿ0.067 ÿ0.569

British pound/U.S. dollar

Binomial multifractal 0.057 0.165 0.235 0.250 0.273

GARCH 0.076 0.191 0.244 0.188 ÿ0.026

MS-GARCH 0.072 0.165 0.238 0.203 0.038

Canadian dollar/U.S. dollar

Binomial multifractal 0.051 0.172 0.221 0.217 0.111

GARCH 0.042 0.154 0.205 0.204 0.070

MS-GARCH 0.055 0.181 0.229 0.199 0.036

Panel B. MSE test vs. multifractal (p-value)

Deutsche mark/U.S. dollar

GARCH 0.307 0.040 0.009 0.001 0.000

MS-GARCH 0.314 0.004 0.000 0.000 0.000

Japanese yen/U.S. dollar

GARCH 0.426 0.208 0.144 0.117 0.063

MS-GARCH 0.415 0.143 0.071 0.021 0.000

British pound/U.S. dollar

GARCH 0.906 0.824 0.606 0.156 0.016

MS-GARCH 0.857 0.499 0.547 0.108 0.000

Canadian dollar/U.S. dollar

GARCH 0.294 0.3590 0.410 0.447 0.292

MS-GARCH 0.597 0.603 0.565 0.380 0.065

This table summarizes out-of-sample forecasting results across multiple horizons. Panel A gives the

restricted forecasting R2 for each model and horizon. Panel B gives p-values from testing that the

corresponding model has a lower out-of-sample forecasting MSE than the binomial multifractal. The tests

are corrected for autocorrelation and heteroscedasticity using Newey and West (1987, 1994). A low p-value

indicates that forecasts from the corresponding model would be rejected in favor of multifractal forecasts.
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We report in Table 10, panel B, the out-of-sample results for FIGARCH. The

restricted R2 show that the multifractal outperforms FIGARCH at all horizons.
MSM dominates at short horizons (1 and 5 days) for the DEM, JPY, and CAD, and

at long horizons (10, 20, and 50 days) for the DEM, JPY, and GBP. Despite its long-

memory structure, FIGARCH performs especially poorly at 50-day horizons. The

corresponding R2 are negative for the DEM, JPY, and GBP. The p-values of the

Table 10 FIGARCH comparison.

Panel A. In-sample

Parameter estimates

v b d 1/n ln L p-value vs. MSM

DEM 0.003 0.906 0.994 0.195 ÿ5731.93 0.056

(0.001) (0.028) (0.045) (0.011)

JPY 0 0.930 1.000 0.228 ÿ5974.64 0.006

(----) (0.006) (----) (0.008)

GBP 0.000 0.931 1.000 0.202 ÿ5567.80 0.053

(0.000) (0.005) (----) (0.008)

CAD 0.005 0.236 0.347 0.148 ÿ105.96 0.062

(0.001) (0.034) (0.028) (0.011)

Panel B. Out-of-sample

Horizon (days)

1 5 10 20 50

Restricted R2

DEM 0.022 0.065 0.080 0.028 ÿ0.167

JPY 0.042 0.009 ÿ0.076 ÿ0.153 ÿ0.588

GBP 0.074 0.183 0.231 0.167 ÿ0.071

CAD 0.030 0.152 0.232 0.246 0.142

MSE Test vs. multifractal ( p-value)

DEM 0.125 0.050 0.056 0.046 0.014

JPY 0.350 0.127 0.087 0.073 0.044

GBP 0.882 0.716 0.462 0.102 0.011

CAD 0.047 0.275 0.609 0.703 0.738

This table gives FIGARCH estimation results and compares in- and out-of-sample results with the

multifractal model. In Panel A, the first four columns give parameter estimates for FIGARCH(1, d, 0). In all

cases, this specification could not be rejected in favor of more general FIGARCH(p, d, q). Asymptotic

standard errors are in parentheses. For both JPY and GBP, the estimated value of d is on the boundary of

1 ÿ e, where e ¼ 10ÿ 5. For JPY, the estimated value of v is on the boundary v ¼ 0, corresponding to

a long-memory volatility process suggested by Robinson (1991). We also report the value of the

log-likelihood and a p-value from a test of whether the FIGARCH likelihood dominates MSM. The test

corresponds to Vuong(1989) adjusted for heteroscedasticity and autocorrelation. In panel B we report

out-of-sample forecasting R2 statistics and their associated p-values, HAC adjusted. For all tests, a

low p-value indicates that FIGARCH would be rejected in favor of MSM.
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MSEs confirm the statistical significance of these results. At the 10% confidence

level, 9 of the 16 MSM forecasts significantly outperform FIGARCH, while none of

the FIGARCH forecasts significantly improve on MSM. Overall the results of

Table 10 show that MSM dominates FIGARCH both in- and out-of-sample.

These results indicate that long memory alone does not explain the excellent

long-run forecasting performance of the multifractal model. As suggested in sub

section 1.2, fractional integration as introduced in FIGARCH tends to produce
smooth patterns in volatility. In contrast, our approach generates long cycles with

a switching mechanism that also gives abrupt volatility changes. Generating long

memory with multiplicative shocks of heterogeneous frequencies is not only

intuitively appealing, it also generates the best long-run forecasts.

5 CONCLUSION

This article proposes an expanded role for regime switching in volatility modeling.

Traditional approaches, such as Markov switching ARCH [Cai (1994), Hamilton
and Susmel (1994)] and GARCH [Gray (1996), Klaassen (2002)], consider sepa-

rately three categories of volatility dynamics. High-frequency variation is cap-

tured by a thick-tailed conditional distribution of returns, midrange frequencies

by smooth ARCH or GARCH components, and only very low frequencies are

modeled with regime switching. We suggest an alternative approach based on

regime switching at all frequencies. The model is tightly parameterized in spite of

a high-dimensional state space. Using four long series of daily exchange rates, we

find that MSM matches or dominates the performance of previous models across a
range of in-sample and out-of-sample measures. Thus the primary contribution of

the article is to show that regime switching can have a much broader scope than

previously envisioned. In particular, our pure regime switching model provides a

viable alternative to approaches that combine regime switching, linear volatility

dynamics, and flexible tail distributions.

Researchers often focus on applications of immediate practical value when

assessing statistical models. We have similarly shown that MSM does well by

several standard measures of performance. From a theoretical perspective, good
econometric descriptions are also useful as the first step in explanation. Whereas

the standard approach separately addresses three distinct statistical phenomena,

MSM offers a unified modeling strategy. As a result, this article invites the theorist

to explore the economic mechanisms causing self-similar regime switching in

financial volatility.

Returning to the more immediate contributions of our work, this article

develops the first comprehensive econometric toolkit to estimate and test multi-

fractal processes. We develop a ML estimator and show that it works well in
Monte Carlo simulations. The application to exchange rates indicates that the

likelihood function increases with the number of volatility components. This

finding is important because it confirms substantial heterogeneity in volatility

persistence, which is one of the primary motivations of the multifractal approach.
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Consistent with intuition, the spacing of volatility components across frequencies

becomes tighter and the contribution of individual volatility components becomes

smaller as the number of components increases.

We also compare the multifractal model with GARCH, MS-GARCH and

FIGARCH, which are chosen because of demonstrated good performance with

exchange rate data under a variety of metrics. Like MSM, these models conveniently

permit ML estimation and analytical forecasting. In-sample, the likelihood is sig-
nificantly higher for the multifractal than for GARCH and FIGARCH, even though

these processes have the same number of parameters. We use a BIC criterion to

compare goodness-of-fit of MS-GARCH and MSM, and find no significant differ-

ence between the two models. Out-of-sample evidence further validates the

multifractal approach. MSM matches or outperforms GARCH, MS-GARCH, and

FIGARCH at short horizons and substantially dominates these at longer horizons.

The multifractal model thus offers a promising new approach to volatility modeling

and is well deserving of further empirical and theoretical investigation.

APPENDIX

A.1 Proof of Proposition 1

Consider a sequence of processes with fixed parameter vector c¼ (m0, s, b, g*).
Note in particular that g�kk¼g* for all �kk. For any integer n � 0 and real q 2 [0,1), it

is convenient to define Kq(n)¼E(jxtjq jxtþ njq)/[E(jxtj2q)] and cq¼ [E(j«tjq)]2/

[E(j«tj2q)]. Multipliers in different stages of the cascade are statistically indepen-
dent. The definition of returns, xt¼s(M1;tM2;t . . . M�kk;t)

1/2«t and xtþn¼s

(M1,tþnM2,tþn . . . M�kk;tþn)1/2 «tþn, implies

KqðnÞ¼ cq½EðMqÞ�ÿ�kk
Y�kk

k¼1

EðMq=2
k;t M

q=2
k;tþnÞ:

NotethatEðMq=2
k;t M

q=2
k;tþnÞ ¼ EðMqÞð1ÿgkÞn þ ½EðMq=2Þ�2½1ÿ ð1ÿgkÞn�,orequivalently

EðMq=2
k;t M

q=2
k;tþnÞ ¼ ½EðM

q=2Þ�2½1þ aqð1ÿ gkÞn�,

where aq¼E(Mq)/[E(Mq/2)]2ÿ 1. Since 1 ÿ gk¼ (1 ÿ g�kk)
bkÿ�kk

and g�kk¼ g*, we obtain

ln
KqðnÞ

cq
¼
X�kk

k¼1

ln
1þ aqð1ÿ g�Þnbkÿ�kk

1þ aq
ð6Þ

As k increases from 1 to �kk, the expression (1ÿ g*)nbkÿ�kk

declines from
(1ÿ g*)nb1ÿ�kk

to (1ÿ g*)n. The maximum (1ÿ g*)nb1ÿ�kk

is close to one and the mini-

mum (1ÿg*)n is close to zero when b
�kk/n and n are large. Intermediate values are

observed when (1ÿ g*)nbkÿ�kk � 1ÿ g*, or equivalently k � logb(b
�kk/n). Let i(n)

denote the unique integer such that i(n) � logb(b
�kk/n) < i(n)þ 1. We anticipate that

ln
KqðnÞ

cq
�

X�kk

k¼iðnÞþ1

ln
1

1þ aq
¼ ÿ ½�kkÿ iðnÞ�lnð1þ aqÞ,

and thus ln Kq(n) � ÿ (logb n) ln(1+aq)¼ ÿ d(q) ln n.
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To formalize this intuition, consider the interval I�kk¼ {n: a1logb(b
�kk) � logb n �

a2 logb(b
�kk)}. Note that logb(b

�kk/n) � (1 ÿ a2) logb(b
�kk) for all n2 I�kk. We henceforth

assume that �kk is sufficiently large so that i(n) � b 8 n 2 I�kk. Consider an arbitrary

sequence of strictly positive integers j(n) monotonically diverging to þ1. The

precise definition of j(n) is temporarily postponed. Let

un ¼ jðnÞlnð1þ aqÞ þ
XiðnÞþjðnÞ

k¼iðnÞÿjðnÞþ1

ln
1þ aqð1ÿ g�Þnbkÿ�kk

1þ aq
:

By Equation (6), ln[Kq(n)/cq] can be decomposed into four components:

ln
KqðnÞ

cq
¼ ÿ ½�kkÿ iðnÞ�lnð1þ aqÞ þ

XiðnÞÿjðnÞ

k¼1

ln
1þ aqð1ÿ g�Þnbkÿ�kk

1þ aq

þ un þ
X�kk

k¼iðnÞþjðnÞþ1

ln½1þ aqð1ÿ g�Þnbkÿ�kk

�: ð7Þ

We successively examine each component on the right-hand side.

� The first component is between ÿ d(q) (ln nþ ln b) and ÿ d(q) ln n.

� The second component contains terms (1ÿ g*)nbkÿ�kk

that are bounded

below by (1ÿg*)nbi(n)ÿj(n)ÿ�kk

. The definition of i(n) implies nbi(n)ÿ�kk � 1 and

thus

XiðnÞÿjðnÞ

k¼1

ln
1þ aqð1ÿ g�Þnbkÿ�kk

1þ aq

�����
������ iðnÞln

1þ aq

1þ aqð1ÿ g�ÞbÿjðnÞ :

By standard concavity arguments, the second component of Equation

(7) is therefore bounded by i(n)bÿj(n)aq j ln(1ÿg*)j.
� The third component, un, contains terms 1 þ aq(1ÿ g*)nbkÿ�kk

that are

between 1 and 1 þ aq. Hence junj � j(n) ln(1 þ aq) � aqj(n).

� The fourth component is positive and bounded above by

aq

X�kk

k¼iðnÞþjðnÞþ1

ð1ÿ g�Þnbkÿ�kk

� aq

X1
k¼0

ð1ÿ g�Þb
knbiðnÞþjðnÞþ1ÿ�kk:

We check that nbi(n)þ j(n)+1ÿ �kk� 1 and bk� k(bÿ 1). The fourth component
is therefore bounded above by aq

P1
k¼0(1ÿg*)k(bÿ1)¼ aq/

[1ÿ (1ÿg*)bÿ1]:

This establishes that

ln KqðnÞ
ln nÿdðqÞ ÿ 1

���� ����� cq
� þ aqjðnÞ þ aqiðnÞbÿjðnÞ j lnð1ÿ g�Þ j

dðqÞln n
,
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where c�q ¼ dðqÞln bþ j ln cq j þ aq=½1ÿ ð1ÿ g�Þðbÿ1Þ�. We now choose a sequence

j(n) such that the right-hand side of the inequality converges to zero. More

specifically, consider the unique integer such that17 j(n) � 2logb i(n)< j(n)þ 1. It is

easy to check that i(n)bÿ j(n)= blogbi(n)ÿ j(n) � 1 and j(n) � 2 log b (logbb
�kk)¼ 2 logb

�kk.

For all n 2 I�kk, the quantity j ln KqðnÞ=ln nÿdðqÞÿ �
ÿ 1 j is therefore bounded above by

h�kk¼
1

�kkdðqÞa1ln b
½2aqlogb

�kkþ c�q þ aq j lnð1ÿ g�Þj �, ð8Þ

which is independent of n. We infer that supn2I�kk
j ln KqðnÞ=ln nÿdðqÞÿ �

ÿ 1j ! 0 as
�kk!þ1.

Finally, it is easy to show that the autocorrelation rq(n) satisfies

1�
KqðnÞ
rqðnÞ

¼
1ÿ cqð1þ aqÞÿ

�kk

1ÿ cqð1þ aqÞÿ
�kk=KqðnÞ

� 1

1ÿ cqð1þ aqÞÿ
�kk=KqðnÞ

: ð9Þ

Equation (8) implies that for all n 2 I�kk, logb Kq(n)� ÿ d(q)(1þh�kk)a2
�kk, and thus

logb½KqðnÞ=ð1þ aqÞÿ
�kk� � �kkdðqÞð1ÿ a2 ÿ a2h�kk=

�kkÞ: ð10Þ

Combining Equations (9) and (10), we conclude that supn2I�kk
j lnðKqðnÞ=rqðnÞÞ j ! 0

and thus that the proposition holds.

A.2 HAC-Adjusted Vuong Test

We consider the probability space (V, F , P0) and a stochastic process fxtgþ1t¼ÿ1.

Each Xt is a random variable taking values on the real line. For every t, it is

convenient to consider the vector of past values Xtÿ1¼fxsgtÿ1
s¼ÿ1. The econome-

trician directly observes a finite number of realizations of xt, but ignores the true

data-generating process. She instead considers two competing families of

models specified by their conditional densities Mf¼ {f(xt jXtÿ 1, u); u2U} and

Mg¼ {g(xt jXtÿ1, g); g 2G}. These families may or may not contain the true data-

generating process. The pseudo-true value u* specifies the model inMf with the
optimal Kullback-Leibler information criterion:

u� ¼ arg max
u2U

E0½ln fðxt jXtÿ1, uÞ�:

The pseudo-true-value g* is similarly defined.

Consider the log-likelihood functions:

L
f
TðuÞ�

XT

t¼1

ln fðxt jXtÿ1, uÞ, L
g
TðgÞ�

XT

t¼1

ln gðxt jXtÿ1, gÞ:

By definition, the ML estimators ûuT and ĝgT maximize the functions L
f
TðuÞ and

L
g
TðgÞ. The corresponding first order conditions are

qL
f
T

qu
ðûuTÞ¼ 0,

qL
g
T

qu
ðĝgTÞ¼ 0: ð11Þ

17 We check that when �kk is large enough, 1 � j(n) � i(n) and j(n) þ i(n) � �kk for all n 2 I�kk.
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We now examine the likelihood ratio

LRTðûuT, ĝgTÞ¼L
f
TðûuTÞ ÿ L

g
TðĝgTÞ¼

XT

t¼1

ln
fðxt jXtÿ1, ûuTÞ
gðxt jXtÿ1, ĝgTÞ

:

By Equation (11), a second-order expansion of LRT implies that ð1=
ffiffiffiffi
T
p
ÞLRT

ðûuT, ĝgTÞ ¼ 1=
ffiffiffiffi
T
p

LRTðu�, g�Þ þ opð1Þ, and thus

1ffiffiffiffi
T
p LRTðûuT, ĝgTÞ¼

1ffiffiffiffi
T
p

XT

t¼1

ln
fðxt jXtÿ1, u�Þ
gðxt jXtÿ1, g�Þ þ opð1Þ:

Let at¼ ln[f(xt jXtÿ1, u*)/g(xt jXtÿ1, g*)] and âat¼ ln[f(xt jXtÿ1, ûuT)/g(xt jXtÿ1, ĝgT)].

When the observations xt are i.i.d., the addends at are also i.i.d. If the models

f and g have equal Kullback-Leibler information criterion, the Central Limit

Theorem implies ð1=
ffiffiffiffi
T
p
ÞLRTðûuT, ĝgTÞ!

d Nð0, s2
�Þ, where s2

� ¼ varðatÞ. The variance
is consistently estimated by the sample variance of {âat}.

In the non-i.i.d. case, we need to adjust for the correlation in the addends at. Let

s2
T ¼ 1=T

PT
s¼1

PT
t¼1 EðasatÞ. We know that 1=

ffiffiffiffi
T
p

LRTðûuT, ĝgTÞ ¼ sTZþ opð1Þ, where

Z is a standard Gaussian. Following Newey and West (1987), we estimate sT by

ŝs2
T ¼ V̂V0 þ 2

XmT

j¼1

wð j, mÞV̂Vj,

where V̂Vj ¼
PT

t¼jþ1 âatâatÿj=T denotes the sample covariance of {âat}, and w(j, m)¼
1ÿ j/(mþ 1) is the Bartlett weight. We choose mT using the automatic lag selection
method of Newey and West (1994).
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