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Chebfun Computing:
“Computing with symbolic feel and numerical speed”
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Overload standard MATLAB vector routines
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Plan:
Overload standard MATLAB vector routines
      with continuous (1D) analogues.

Implementation:
Machine precision interpolation with
      Chebshev polynomials.

!= Hybrid symbolic/numeric computing.



The software:
Version 4.1 release 01/08/2011.
BSD(new) license.
Written in MATLAB.

      Nightly builds (www.chebfun.org/nightly/)

This talk:
A brief introduction via some demos.
Description of one or two core routines.
Examples of some more advanced features.

Feel free to download 
and follow along!
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The Project

+  Started in 2006, open-source in 2011 with v4.0

+ ~2500 downloads (+MWFE) since v4.0 release in March '11

+  ~15 contributors? (Still mostly in Oxford...)

+  SVN for version control and Trac for bug reports/wiki

+ ~1000 M-files & ~60,000 lines of code

+ ~20-100 citations? (It's hard to count!)

+ ~100 online Examples (I'll show you some later!)
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Algorithm:
1. Interpolate at n+1 Chebyshev points.
2. Convert function values to coefficients.
3. Converged? No → increase n & repeat,

Yes → done.
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+ Evaluation → Barycentric formula

+ Integration → Clenshaw-Curtis quadrature

+ Differentiation → Recurrence on coefficients

+ Rootfinding →  Colleague matrix of coefficients

How it works (cont.)
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(Plus some boundary conditions...)
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(0.1Dn

2+Dn+diag(x))pn(x)=Ln pn(x)=1
u(x)≈pn(x)=Ln∖1

pn 'x =Dn pnx  , pn ' 'x =Dn
2 pnx  , ...

Chebyshev Spectral Methods
(One slide introduction)



Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn
+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!



Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn
+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!



Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn
+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!



Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn

+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!



Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn

+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!



Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn

+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!



+ Extend idea of rootfinding via Newton method to 
    continuous framework & solve linear subproblems.

u ← u - diff(N(u,x),u)\N(u,x)

+ Requires (Fréchet) derivatives of the operators involved,
   which are obtained by Automatic Differentiation (AD).

Nonlinear ODEs, N(u,x) = 0. 
(Newton iteration)



MATLAB Demo
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Eigenvalue Repulsion
If you morph one NxN matrix A into the another B by the formula 

   C(t) = (1-t)A + tB, 
then as t : 0 → 1, the eigenvalues change continuously from those of A to those of B .

The phenomenon of “level repulsion”, or “eigenvalue avoided crossings”, goes back to 
von Neumann and Wigner, and states that with probability 1 there is no t for which C 
has a multiple eigenvalue.

We can verify this in Chebfun!
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Optics: Eigenvalues of Fox-Li 
In the field of optics, integral operators arise that have a complex symmetric 
(but non-Hermitian) oscillatory kernel. An example is the following linear 
Fredholm operator L, associated with the names of Fox and Li:

L maps a function u defined on [-1,1] to another function v = Lu defined on [-1,1]. 
The number F is a positive real parameter, the Fresnel number, and the kernel 
function K(x,s) is

Compute the 80 largest eigenvalues of L.

Lu(x)=v (x)=√iF /π∫−1

1
K (x ,s)u(s)ds

K x ,s=exp−iF x−s2
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Many more online



The Future



+ Improve speed and usability/simplicity

+ Improve ODE and PDE solvers

+ Higher dimensions? 

+ Increase developer and user base (incl. publications)

+ Improve connections to real-world applications

+ Port to other languages? (C, Octave, Python?)

The Future



The End



The End
Thank you for listening!*

* and KAUST Award No. KUK-C1-013-04, The EPSRC, and The MathWorks for funding!

www.chebfun.org
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T0(x)=1, T1(x)=x , T j+1=2xT j(x)−T j−1
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½Tn−1(r)−
1

2cn
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