
A brief introduction to

Chebfun
By Nick Hale

University of Oxford
hale@maths.ox.ac.ukwww.chebfun.org

http://www.chebfun.org/

Philosophy:
Numerical computing with functions.

Philosophy:
Numerical computing with functions.

“Computing with symbolic feel and numerical speed”

Symbolic Computing (Maple, Mathematica, etc.)
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

Symbolic Computing (Maple, Mathematica, etc.)
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

SymPy

Symbolic Computing (Maple, Mathematica, etc.)
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

For example, what's the integral of exp(-x) cos(6x)5 sin(5x)6 from -1 to 1?

SymPy

For example, what's the integral of exp(-x) cos(6x)5 sin(5x)6 from -1 to 1?

Maple or Mathematica can figure out the answer symbolically:

(SymPy fails...?)

For example, what's the integral of exp(-x) cos(6x)5 sin(5x)6 from -1 to 1?

Maple or Mathematica can figure out the answer symbolically:

Symbolic Computing (Maple, Mathematica, etc.)
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

SymPy

Symbolic Computing (Maple, Mathematica, etc.)
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

SymPy

Symbolic Computing (Maple, Mathematica, etc.)
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

Numerical Computing (MATLAB, C, Fortran, etc.)
 Work with numerical approximations instead of exact expressions.

 Perform each operation to relative accuracy of about 10–16.
 This kills the combinatorial explosion.

PROBLEM: What if we want not just numbers, but functions like f(x)?

SymPy

Numerical Computing (MATLAB, C, Fortran, etc.)
 Work with numerical approximations instead of exact expressions.

 Perform each operation to relative accuracy of about 10–16.
 This kills the combinatorial explosion.

PROBLEM: What if we want not just numbers, but functions like f(x)?

SciPy / NumPy

Symbolic Computing (Maple, Mathematica, etc.)
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

SymPy

Chebfun Computing:
“Computing with symbolic feel and numerical speed”

Symbolic Computing (Maple, Mathematica, etc.)
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

SymPy

Numerical Computing (MATLAB, C, Fortran, etc.)
 Work with numerical approximations instead of exact expressions.

 Perform each operation to relative accuracy of about 10–16.
 This kills the combinatorial explosion.

PROBLEM: What if we want not just numbers, but functions like f(x)?

SciPy / NumPy

Philosophy:
Numerical computing with functions.

Plan:
Overload standard MATLAB vector routines
 with continuous (1D) analogues.

Implementation:
Machine precision interpolation with
 Chebshev polynomials.

Philosophy:
Numerical computing with functions.

Plan:
Overload standard MATLAB vector routines
 with continuous (1D) analogues.

Implementation:
Machine precision interpolation with
 Chebshev polynomials.

!= Hybrid symbolic/numeric computing.

The software:
Version 4.1 release 01/08/2011.
BSD(new) license.
Written in MATLAB.

 Nightly builds (www.chebfun.org/nightly/)

This talk:
A brief introduction via some demos.
Description of one or two core routines.
Examples of some more advanced features.

Feel free to download
and follow along!

The software:
Version 4.1 release 01/08/2011.
BSD(new) license.
Written in MATLAB.

 Nightly builds (www.chebfun.org/nightly/)

This talk:
A brief introduction via some demos.
Description of one or two core routines.
Examples of some more advanced features.

Feel free to download
and follow along!

The Project

+ Started in 2006, open-source in 2011 with v4.0

+ ~2500 downloads (+MWFE) since v4.0 release in March '11

+ ~15 contributors? (Still mostly in Oxford...)

+ SVN for version control and Trac for bug reports/wiki

+ ~1000 M-files & ~60,000 lines of code

+ ~20-100 citations? (It's hard to count!)

+ ~100 online Examples (I'll show you some later!)

The People

MATLAB Demo

How it works

Function evaluations of f at Chebyshev nodes

 FFT

f (x)≈∑ ck Tk(x)

How it works

Function evaluations of f at Chebyshev nodes

 FFT

+

+
Tk x =cos k acosx ⇒∣Tk x ∣1

f (x)≈∑ ck Tk(x)

f∈Cd [−1,1]⇒ck=O kd , f∈H [−1,1]⇒ck=O e−Ck

How it works

Function evaluations of f at Chebyshev nodes

 FFT

+

+

Algorithm:
1. Interpolate at n+1 Chebyshev points.
2. Convert function values to coefficients.
3. Converged? No → increase n & repeat,

Yes → done.

Tk x =cos k acosx ⇒∣Tk x ∣1

f (x)≈∑ ck Tk(x)

f∈Cd [−1,1]⇒ck=O kd , f∈H [−1,1]⇒ck=O e−Ck

How it works

How it works
>> f = chebfun(@(x) 1./(1+25*(x+.1).^2));
>> chebpolyplot(f);

>> f = chebfun(@(x) 1./(1+25*(x+.1).^2), 9);
>> chebpolyplot(f);

How it works

>> f = chebfun(@(x) 1./(1+25*(x+.1).^2), 17);
>> chebpolyplot(f);

How it works

>> f = chebfun(@(x) 1./(1+25*(x+.1).^2), 33);
>> chebpolyplot(f);

How it works

>> f = chebfun(@(x) 1./(1+25*(x+.1).^2), 65);
>> chebpolyplot(f);

How it works

>> f = chebfun(@(x) 1./(1+25*(x+.1).^2), 129);
>> chebpolyplot(f);

How it works

>> f = chebfun(@(x) 1./(1+25*(x+.1).^2), 257);
>> chebpolyplot(f);

How it works

>> f = chebfun(@(x) 1./(1+25*(x+.1).^2));
>> chebpolyplot(f);

How it works

+ Evaluation → Barycentric formula

+ Integration → Clenshaw-Curtis quadrature

+ Differentiation → Recurrence on coefficients

+ Rootfinding → Colleague matrix of coefficients

How it works (cont.)

Differential Eqns

f (x)=pn(x)⇒f '(x)≈pn '(x)

Chebyshev Spectral Methods
(One slide introduction)

f (x)=pn(x)⇒ f '(x)≈pn '(x)

Chebyshev Spectral Methods
(One slide introduction)

f (x)=pn(x)⇒ f '(x)≈pn '(x)
pn 'x =Dn pnx  , pn ' 'x =Dn

2 pnx  , ...

Chebyshev Spectral Methods
(One slide introduction)

(Plus some boundary conditions...)

f (x)=pn(x)⇒ f '(x)≈pn '(x)

0.1u''+u'+xu=1
(0.1Dn

2+Dn+diag(x))pn(x)=Ln pn(x)=1
u(x)≈pn(x)=Ln∖1

pn 'x =Dn pnx  , pn ' 'x =Dn
2 pnx  , ...

Chebyshev Spectral Methods
(One slide introduction)

Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn
+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!

Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn
+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!

Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn
+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!

Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn

+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!

Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn

+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!

Chebyshev Spectral Methods
(One slide introduction)

=Ln un fn

+ Check for happiness in u

+ If not happy, increase n

+ If happy, then done!

+ Extend idea of rootfinding via Newton method to
 continuous framework & solve linear subproblems.

u ← u - diff(N(u,x),u)\N(u,x)

+ Requires (Fréchet) derivatives of the operators involved,
 which are obtained by Automatic Differentiation (AD).

Nonlinear ODEs, N(u,x) = 0.
(Newton iteration)

MATLAB Demo

Examples

Eigenvalue Repulsion
If you morph one NxN matrix A into the another B by the formula

 C(t) = (1-t)A + tB,
then as t : 0 → 1, the eigenvalues change continuously from those of A to those of B .

The phenomenon of “level repulsion”, or “eigenvalue avoided crossings”, goes back to
von Neumann and Wigner, and states that with probability 1 there is no t for which C
has a multiple eigenvalue.

We can verify this in Chebfun!

Eigenvalue Repulsion
If you morph one NxN matrix A into the another B by the formula

 C(t) = (1-t)A + tB,
then as t : 0 → 1, the eigenvalues change continuously from those of A to those of B .

The phenomenon of “level repulsion”, or “eigenvalue avoided crossings”, goes back to
von Neumann and Wigner, and states that with probability 1 there is no t for which C
has a multiple eigenvalue.

We can verify this in Chebfun!

n = 10;
A = randn(n); A = A+A';
B = randn(n); B = B+B';
ek = @(e,k) e(k); % returns kth element of the vector e
eigA = @(A) sort(eig(A)); % returns sorted eigenvalues of the matrix A
eigk = @(A,k) ek(eigA(A),k); % returns kth eigenvalue of the matrix A
for k = 1:n
 E(:,k) = chebfun(@(t) eigk((1-t)*A+t*B,k),[0 1]);
end
plot(E)

Eigenvalue Repulsion
If you morph one NxN matrix A into the another B by the formula

 C(t) = (1-t)A + tB,
then as t : 0 → 1, the eigenvalues change continuously from those of A to those of B .

The phenomenon of “level repulsion”, or “eigenvalue avoided crossings”, goes back to
von Neumann and Wigner, and states that with probability 1 there is no t for which C
has a multiple eigenvalue.

We can verify this in Chebfun!

n = 10;
A = randn(n); A = A+A';
B = randn(n); B = B+B';
ek = @(e,k) e(k); % returns kth element of the vector e
eigA = @(A) sort(eig(A)); % returns sorted eigenvalues of the matrix A
eigk = @(A,k) ek(eigA(A),k); % returns kth eigenvalue of the matrix A
for k = 1:n
 E(:,k) = chebfun(@(t) eigk((1-t)*A+t*B,k),[0 1]);
end
plot(E)

Optics: Eigenvalues of Fox-Li
In the field of optics, integral operators arise that have a complex symmetric
(but non-Hermitian) oscillatory kernel. An example is the following linear
Fredholm operator L, associated with the names of Fox and Li:

L maps a function u defined on [-1,1] to another function v = Lu defined on [-1,1].
The number F is a positive real parameter, the Fresnel number, and the kernel
function K(x,s) is

Compute the 80 largest eigenvalues of L.

Lu(x)=v (x)=√iF /π∫−1

1
K (x ,s)u(s)ds

K x ,s=exp−iF x−s2

Optics: Eigenvalues of Fox-Li
In the field of optics, integral operators arise that have a complex symmetric
(but non-Hermitian) oscillatory kernel. An example is the following linear
Fredholm operator L, associated with the names of Fox and Li:

L maps a function u defined on [-1,1] to another function v = Lu defined on [-1,1].
The number F is a positive real parameter, the Fresnel number, and the kernel
function K(x,s) is

Compute the 80 largest eigenvalues of L.

Lu(x)=v (x)=√iF /π∫−1

1
K (x ,s)u(s)ds

K x ,s=exp−iF x−s2

F = 64*pi; % Fresnel number
K = @(x,s) exp(-1i*F*(x-s).^2); % Kernel
L = sqrt(1i*F/pi)*fred(K,domain(-1,1)); % Fredholm integral operator
lam = eigs(L,80,'lm'); % Compute eigenvalues
plot(lam); % Plot

Optics: Eigenvalues of Fox-Li
In the field of optics, integral operators arise that have a complex symmetric
(but non-Hermitian) oscillatory kernel. An example is the following linear
Fredholm operator L, associated with the names of Fox and Li:

L maps a function u defined on [-1,1] to another function v = Lu defined on [-1,1].
The number F is a positive real parameter, the Fresnel number, and the kernel
function K(x,s) is

Compute the 80 largest eigenvalues of L.

Lu(x)=v (x)=√iF /π∫−1

1
K (x ,s)u(s)ds

K x ,s=exp−iF x−s2

F = 64*pi; % Fresnel number
K = @(x,s) exp(-1i*F*(x-s).^2); % Kernel
L = sqrt(1i*F/pi)*fred(K,domain(-1,1)); % Fredholm integral operator
lam = eigs(L,80,'lm'); % Compute eigenvalues
plot(lam); % Plot

Many more online

The Future

+ Improve speed and usability/simplicity

+ Improve ODE and PDE solvers

+ Higher dimensions?

+ Increase developer and user base (incl. publications)

+ Improve connections to real-world applications

+ Port to other languages? (C, Octave, Python?)

The Future

The End

The End
Thank you for listening!*

* and KAUST Award No. KUK-C1-013-04, The EPSRC, and The MathWorks for funding!

www.chebfun.org

Colleague Matrices & Rootfinding
pn(x)=∑

j=0

n

c j T j(x)Seek the roots of the Chebyshev polynomial

Recurrence relation for the Chebyshev polynomials

T0(x)=1, T1(x)=x , T j+1=2xT j(x)−T j−1

Colleague Matrices & Rootfinding
pn(x)=∑

j=0

n

c j T j(x)

T0(r)=1, T1(r)=r ,(T j+1(r)+T j−1(r))/2=rT j(r)

Seek the roots of the Chebyshev polynomial

Recurrence relation for the Chebyshev polynomials

Colleague Matrices & Rootfinding
pn(x)=∑

j=0

n

c j T j(x)

T0(r)=1, T1(r)=r ,(T j+1(r)+T j−1(r))/2=rT j(r)

Seek the roots of the Chebyshev polynomial

Recurrence relation for the Chebyshev polynomials

[(0 1 0 0
½ 0 ½ 0
0 ⋱ ⋱ ⋱
0 0 ½ 0

)− 1
2cn (

0 0 0
0 0 0
0 0 0
c0 ⋯ cn−1

)]
Consider the 'Colleague' matrix

Colleague Matrices & Rootfinding
pn(x)=∑

j=0

n

c j T j(x)

T0(r)=1, T1(r)=r ,(T j+1(r)+T j−1(r))/2=rT j(r)

Seek the roots of the Chebyshev polynomial

Recurrence relation for the Chebyshev polynomials

Consider the 'Colleague' matrix. Eigenvalues are roots of p !

[(0 1 0 0
½ 0 ½ 0
0 ⋱ ⋱ ⋱
0 0 ½ 0

)− 1
2cn (

0 0 0
0 0 0
0 0 0
c0 ⋯ cn−1

)][T0(r)
T1(r)

⋮
Tn−1(r)

]=r [T0(r)
T1(r)

⋮
Tn−1(r)]

n

Colleague Matrices & Rootfinding
pn(x)=∑

j=0

n

c j T j(x)

T0(r)=1, T1(r)=r ,(T j+1(r)+T j−1(r))/2=rT j(r)

Seek the roots of the Chebyshev polynomial

Recurrence relation for the Chebyshev polynomials

Consider the 'Colleague' matrix. Eigenvalues are roots of p !

[(0 1 0 0
½ 0 ½ 0
0 ⋱ ⋱ ⋱
0 0 ½ 0

)− 1
2cn (

0 0 0
0 0 0
0 0 0
c0 ⋯ cn−1

)][T0(r)
T1(r)

⋮
Tn−1(r)

]=r [T0(r)
T1(r)

⋮
Tn−1(r)]

n

½Tn−1(r)−
1

2cn

∑
j=0

n

c j T j(r)=rTn−1(r)⇒pn(0)=0

