
Faster arithmetic for number-theoretic transforms

David Harvey

University of New South Wales

20th December 2011, FLINT/Sage Days, University of Warwick

David Harvey Faster arithmetic for number-theoretic transforms



Plan for talk

1. Review number-theoretic transform (NTT)

2. Discuss typical butterfly algorithm

3. Improvements to butterfly algorithm

4. Performance data

David Harvey Faster arithmetic for number-theoretic transforms



The number-theoretic transform (NTT)

NTT = discrete Fourier transform (DFT) over a finite field.

We will assume:

I transform length is N = 2n.

I base field is Fp where p is prime and p = 1 (mod N), so that
Fp contains N-th roots of unity.

I p fits into a single machine word, i.e. p < β, where β
describes the word size, for example β = 264.

David Harvey Faster arithmetic for number-theoretic transforms



The number-theoretic transform (NTT)

Definition of NTT:

Input vector (a0, . . . , aN−1) ∈ FN
p .

Let ω be an N-th root of unity in Fp.

Output is the vector (b0, . . . , bN−1) where

bj =
∑

0≤i<N

ωijai .

Computing NTT is equivalent to evaluating the polynomial

f (x) = a0 + a1x + · · ·+ aN−1x
N−1

simultaneously at the points

1, ω, ω2, . . . , ωN−1.

David Harvey Faster arithmetic for number-theoretic transforms



The number-theoretic transform (NTT)

Naive algorithm for NTT has complexity O(N2).

(Complexity = number of ring operations in Fp.)

Fast Fourier transform (FFT) has complexity O(N logN).

Applications:

I Fast polynomial multiplication in Fp[X ].

I Fast polynomial multiplication in Z[X ] (via Chinese remainder
theorem), (Z/nZ)[X ], Fq[X ], etc.

I Other polynomial operations: reciprocal, division, GCD,
square root, composition, factoring, etc.

Real-life example: Victor Shoup’s NTL library, very popular in
computational number theory and cryptography, uses the fast NTT
as the building block for all of these operations.

David Harvey Faster arithmetic for number-theoretic transforms



The number-theoretic transform (NTT)

Algorithm 1: Simple FFT pseudocode

Input: N = 2n, (a0, . . . , aN−1) ∈ FN
p

1 for i ← 0, 1, . . . , n − 1 do
2 for 0 ≤ j < 2i do
3 for 0 ≤ k < 2n−i−1 do
4 s ← j2n−i + k
5 t ← j2n−i + k + 2n−i−1

6 w ← (ω2i )k

7

[
as
at

]
←
[

as + at
w(as − at)

]
(butterfly)

Output is in-place, in bit-reversed order.

David Harvey Faster arithmetic for number-theoretic transforms



Butterflies

Consider the butterfly operation[
X
Y

]
7→
[

X + Y
W (X − Y )

]
.

Algorithm performs O(N logN) of these.

O(N) of them have W = 1; we will concentrate on W 6= 1 case.

We will assume indexing and locality is taken care of, and assume
W comes from table lookup.

Our focus is the following problem: given X , Y and W , how to
most efficiently compute X + Y and W (X − Y )?

David Harvey Faster arithmetic for number-theoretic transforms



Butterflies

∼=

X Y

X ′ Y ′

X ′ = X + Y

Y ′ = W (X − Y )

David Harvey Faster arithmetic for number-theoretic transforms



Butterflies

Primitive operations allowed (modelled on typical modern
instruction sets):

I addition/subtraction of single words (modulo β)

I comparison of single words

I multiplication of single words (modulo β)

I wide multiplication, i.e. given U,V ∈ [0, β), compute UV in
the form UV = P1β + P0 where P0,P1 ∈ [0, β).

For expository purposes I’ll also temporarily assume we have:

I double-word division, i.e. given U ∈ [0, β2) and M ∈ [0, β),
compute Q = bU/Mc and R = U − QM

David Harvey Faster arithmetic for number-theoretic transforms



Butterflies

Algorithm 2: Simple butterfly routine

Input: X ,Y ,W ∈ [0, p), assume p < β/2
Output: X ′ = X + Y mod p

Y ′ = W (X − Y ) mod p

1 X ′ ← X + Y
2 if X ′ ≥ p then X ′ ← X ′ − p (now X ′ = X + Y mod p)

3 T ← X − Y
4 if T < 0 then T ← T + p (now T = X − Y mod p)

5 U = U1β + U0 ← TW (wide multiplication)
6 Y ′ ← U mod p (double-word division)

This is inefficient because hardware division is slow.

David Harvey Faster arithmetic for number-theoretic transforms



Modular multiplication

How can we compute TW mod p more efficiently?

There are several well-known methods that replace the division by
multiplication(s).

Basic strategy:

I Estimate a ‘quotient’ Q.

I Multiply Q by p.

I Subtract Qp from TW to obtain candidate remainder R.

I Add/subtract small multiple of p to adjust remainder into
standard interval [0, p).

David Harvey Faster arithmetic for number-theoretic transforms



Modular multiplication

Algorithm 3: Shoup’s modular multiplication algorithm

Input: T ,W ∈ [0, p), assume p < β/2
precomputed W ′ = bWβ/pc

Output: R = TW mod p

1 Q ← bW ′T/βc (high part of product W ′T )
2 R ← (WT − Qp) mod β (two low products)
3 if R ≥ p then R ← R − p

Note: W is invariant. This is reasonable for the NTT, since each
transform uses the same roots of unity.

W ′ is a scaled approximation to W /p.

Q is an approximation to WT/p.

Claim: WT − Qp ∈ [0, 2p). Thus the R computed in line 2 is
exactly WT − Qp. The last line adjusts the remainder into [0, p).

David Harvey Faster arithmetic for number-theoretic transforms



Modular multiplication

Proof of claim: we have

0 ≤ Wβ

p
−W ′ < 1 and 0 ≤ W ′T

β
− Q < 1.

Multiply by Tp/β and p respectively, and add:

0 ≤WT − Qp < 2p.

In other words, Q is either the correct quotient or too large by 1.

David Harvey Faster arithmetic for number-theoretic transforms



Modular multiplication

Algorithm 4: Shoup butterfly

Input: X ,Y ,W ∈ [0, p), assume p < β/2
precomputed W ′ = bWβ/pc

Output: X ′ = X + Y mod p, Y ′ = W (X − Y ) mod p

1 X ′ ← X + Y
2 if X ′ ≥ p then X ′ ← X ′ − p

3 T ← X − Y
4 if T < 0 then T ← T + p

5 Q ← bW ′T/βc
6 Y ′ ← (WT − Qp) mod β
7 if Y ′ ≥ p then Y ′ ← Y ′ − p

This is essentially the algorithm used in NTL.

David Harvey Faster arithmetic for number-theoretic transforms



Removing adjustment steps

Our goal: to remove as many adjustment steps

“if (some condition) then Z ← Z ± p”

as possible.

Each adjustment requires several machine instructions: a
conditional move, and several other instructions to set it up.

These adjustments can account for a significant proportion of the
total execution time.

Especially on modern processors with very fast multipliers!

David Harvey Faster arithmetic for number-theoretic transforms



Removing adjustment steps

One adjustment is easy to remove.

In Shoup’s algorithm for computing TW mod p, we assumed that
T ∈ [0, p).

But in fact the algorithm works perfectly well for any T ∈ [0, β).

So we can simply skip the adjustment for T .

(I don’t know where this was first noticed, but certainly Fabrice
Bellard knew this in 2009 when he computed π to 2.7 trillion
decimal places using a souped-up desktop machine. NTL does not
use this trick.)

David Harvey Faster arithmetic for number-theoretic transforms



Removing adjustment steps

Algorithm 5: Shoup butterfly, one adjustment removed

Input: X ,Y ,W ∈ [0, p), assume p < β/2
precomputed W ′ = bWβ/pc

Output: X ′ = X + Y mod p, Y ′ = W (X − Y ) mod p

1 X ′ ← X + Y
2 if X ′ ≥ p then X ′ ← X ′ − p

3 T ← X − Y + p (now T ≡ X − Y mod p, and T ∈ [0, 2p))

4 Q ← bW ′T/βc
5 Y ′ ← (WT − Qp) mod β
6 if Y ′ ≥ p then Y ′ ← Y ′ − p

David Harvey Faster arithmetic for number-theoretic transforms



Removing adjustment steps

What about the last adjustment for Y ′?

Apparently the only way to avoid it is to somehow get the quotient
bTW /pc correct the first time.

But I don’t know of any way to get the correct quotient efficiently.

(This is part of the reason that hardware division is so slow!)

David Harvey Faster arithmetic for number-theoretic transforms



Removing adjustment steps

But there is another way... don’t perform the adjustment!

Then the butterfly outputs lie in [0, 2p).

Relax the algorithm to allow the inputs to lie [0, 2p).

In other words, the entire FFT algorithm operates on
‘non-canonical residues’. Each element of Fp has two possible
representatives, one in [0, p) and one in [p, 2p).

If desired, a final pass at the end reduces the output into [0, p).

We need p < β/4 for this scheme to work.

David Harvey Faster arithmetic for number-theoretic transforms



Removing adjustment steps

Algorithm 6: Shoup butterfly, two adjustments removed

Input: X ,Y ∈ [0, 2p), W ∈ [0, p), assume p < β/4
precomputed W ′ = bWβ/pc

Output: X ′ ≡ X + Y mod p, Y ′ ≡W (X − Y ) mod p
X ′,Y ′ ∈ [0, 2p)

1 X ′ ← X + Y
2 if X ′ ≥ 2p then X ′ ← X ′ − 2p

3 T ← X − Y + 2p

4 Q ← bW ′T/βc
5 Y ′ ← (WT − Qp) mod β

I don’t know how to remove the adjustment in line 2.

David Harvey Faster arithmetic for number-theoretic transforms



The inverse butterfly

Consider the ‘inverse butterfly’[
X
Y

]
7→
[
X + WY
X −WY

]
.

This is the inverse of the ordinary butterfly (after replacing W by
W−1, and dividing by 2).

The inverse butterfly appears naturally in the inverse FFT
algorithm.

One can also implement a forward FFT using the inverse butterfly
by switching from decimation-in-frequency to decimation-in-time.

David Harvey Faster arithmetic for number-theoretic transforms



The inverse butterfly

A similar trick applies to the inverse butterfly, but now we use
representatives in [0, 4p):

Algorithm 7: Shoup inverse butterfly, two adjustments removed

Input: X ,Y ∈ [0, 4p), W ∈ [0, p), assume p < β/4
Output: X ′ ≡ X + WY mod p, Y ′ ≡ X −WY mod p

X ′,Y ′ ∈ [0, 4p)

1 if X ≥ 2p then X ← X − 2p (now X ∈ [0, 2p))

2 U ←WY mod p with 0 ≤ U < 2p
(Shoup multiplication without adjustment)

3 X ′ ← X + U
4 Y ′ ← X − U + 2p

David Harvey Faster arithmetic for number-theoretic transforms



Montgomery multiplication

Algorithm 8: Montgomery’s modular multiplication algorithm

Input: T ,W ∈ [0, p), assume p < β/2
precomputed J = p−1 mod β and W ′ = βW mod p

Output: R = TW mod p

1 U = U1β + U0 ← TW ′ (wide product)
2 Q ← U0J mod β (low product)
3 H ← bQp/βc (high product)
4 R ← U1 − H
5 if R < 0 then R ← R + p

In this algorithm Q is a 2-adic approximation to TW ′/p.

Proof of correctness: we have Qp = Hβ + U0, so

U1 − H = (U − Qp)/β ≡ TW ′/β ≡ TW mod p.

Moreover U1,H ∈ [0, p), so the first guess for R lies in (−p, p).

David Harvey Faster arithmetic for number-theoretic transforms



Montgomery multiplication

Algorithm 9: Montgomery butterfly

Input: X ,Y ,W ∈ [0, p), assume p < β/2
precomputed J = p−1 mod β and W ′ = βW mod p

Output: X ′ = X + Y mod p, Y ′ = W (X − Y ) mod p

1 X ′ ← X + Y
2 if X ′ ≥ p then X ′ ← X ′ − p

3 T ← X − Y
4 if T < 0 then T ← T + p

5 U = U1β + U0 ← TW ′

6 Q ← U0J mod β
7 H ← bQp/βc
8 Y ′ ← U1 − H
9 if Y ′ < 0 then Y ′ ← Y ′ + p

David Harvey Faster arithmetic for number-theoretic transforms



Montgomery multiplication

Just as in the Shoup case, we can remove two adjustments:

Algorithm 10: Montgomery butterfly, two adjustments removed

Input: X ,Y ∈ [0, 2p), W ∈ [0, p), assume p < β/4
precomputed J = p−1 mod β and W ′ = βW mod p

Output: X ′ ≡ X + Y mod p, Y ′ ≡W (X − Y ) mod p
X ′,Y ′ ∈ [0, 2p)

1 X ′ ← X + Y
2 if X ′ ≥ p then X ′ ← X ′ − 2p

3 T ← X − Y + 2p (adjustment skipped)

4 U = U1β + U0 ← TW ′

5 Q ← U0J mod β
6 H ← bQp/βc
7 Y ′ ← U1 − H + p (adjustment skipped)

David Harvey Faster arithmetic for number-theoretic transforms



Performance data

Next slide compares performance of several algorithms on AMD
Opteron (K8 model 8218) and Intel Core 2 Duo (Penryn SL9600):

I NTL FFT routine (version 5.5.2, after running tuning wizard).
Excludes bit-reversal and generating root tables. NTL uses a
50-bit modulus for historical reasons.

I C/C++ implementation of Barrett, Shoup, Montgomery
algorithms, both ‘plain’ (performs all three reductions) and
‘modified’ (only one reduction). Modulus is as close to 64 bits
as allowed. Wide multiplication uses inline assembly macros.

I Assembly implementation of ‘modified Shoup’, one optimised
for each processor.

Transforms are length 212 = 4096, all in L1 cache.

Table shows cycles per butterfly, assuming exactly 1
2N lg2N

butterflies.

David Harvey Faster arithmetic for number-theoretic transforms



Performance data

AMD K8 (Opteron) Intel Core 2

NTL 16.3† 16.5
Plain Barrett 16.8 20.7

Modified Barrett 12.7 12.4
Plain Shoup 13.4 11.8

Modified Shoup 11.2 10.5
Plain Montgomery 12.7 13.2

Modified Montgomery 10.7 11.5
Assembly∗ 6.0 8.0

† Transform length only 211, seemed to be slightly faster.

∗ Assembly cycle counts are exact, based on measurements of inner
loop. Cycles per butterfly are slightly higher.

David Harvey Faster arithmetic for number-theoretic transforms



Performance data

Personal communication from Niels Möller, Torbjörn Granlund,
Tommy Färnquist (GMP developers, highly experienced assembly
programmers):

The fastest they can make ‘plain Shoup’ on AMD K8 is about 8.5
cycles per butterfly in the inner loop (more precisely 8.0 if the root
of unity is invariant over the loop, 9.0 if it varies over the loop).

So here we are 1.4x faster!

David Harvey Faster arithmetic for number-theoretic transforms



Performance data

The cycle counts for the assembly implementations are optimal in
the following sense:

On the AMD chip, maximum integer multiply throughput is 2
cycles per multiply. Each butterfly has 3 multiplications, so this
implementation saturates the multiplier.

On the Intel chip, maximum throughput is 2 cycles for the low
word of a product, and 4 cycles for the wide product. The Shoup
algorithm needs one wide multiply and two low multiplies: total is
8 cycles per butterfly, again we saturate the multiplier.

This also suggests that on chips with even faster multipliers
(relative to other operations), such as newer Nehalem or Sandy
Bridge, it might be worth trying to eliminate even more
adjustments.

David Harvey Faster arithmetic for number-theoretic transforms



Radix-4

Example: assume p < β/16, represent values in [0, 4p). Use a
radix-4 decomposition of FFT, i.e. decompose into transforms of
length 4, composed of 4 ordinary butterflies each. Then we only
need one adjustment for each such transform:

[0, 4p) [0, 4p) [0, 4p) [0, 4p)

[0, 8p) [0, 8p) [0, 2p) [0, 2p)

[0, 16p) [0, 2p) [0, 4p) [0, 2p)

[0, 4p)

David Harvey Faster arithmetic for number-theoretic transforms



Integer multiplication

Another application for NTTs is large integer multiplication.

GMP developers have been working on this for a while, nothing
released.

I wrote my own from scratch, in pure C, optimised for multicore
performance and low memory usage (inputs are overwritten!).

Performance data for 1.2GB inputs (2 × quad-core 3GHz Intel
Xeon X5472, 16 GB RAM):

Wall time (s) Peak memory (GB)

GMP 5.0.2 266 11.1
MPIR 2.4.0 340 9.9
NTT 0.1.0 (1 core) 246 7.0
NTT 0.1.0 (8 cores) 45 7.0

David Harvey Faster arithmetic for number-theoretic transforms



Thank you!

David Harvey Faster arithmetic for number-theoretic transforms


