L! a quasi-linear LLL algorithm

Andy Novocin
University of Waterloo
joint with
Damien Stehlé and Gilles Villard

FLINT Sage Days (35), December 18, 2011

Goals for this talk

e My goal: Be useful to the audience

Goals for this talk

e My goal: Be useful to the audience
e Two potential types:

Goals for this talk

e My goal: Be useful to the audience
e Two potential types:
e competent but not LLL experts

Goals for this talk

e My goal: Be useful to the audience
e Two potential types:

e LLL users, maybe experts

Goals for this talk

e My goal: Be useful to the audience
e Two potential types:
e competent but not LLL experts

e A qift for non-experts: an LLL for your toolbox
(over ambitious?)

Goals for this talk

e My goal: Be useful to the audience
e Two potential types:

e LLL users, maybe experts

 Reward for the others: the novel concepts in L*

LLL: A wonderful problem solving tool

To use LLL you must know when it's possible to use LLL.

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy sonme property.

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy sonme property.

Example Applications:

LLL: A wonderful problem solving tool

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES REST»WF-MT

«—— APPENIZERS —
MIXED FRUIT 215
FRENCH FRIES 275
SIDE 5ALAD 335
HoT WINGS Z.55
MOzzAREUA STICXS 420
SAMPLER PLATE 5.80

WED LIKE EXACTLY §15.05
WORTH GF APPETIZERS, PLEASE.

| . EXATLY? UHA ..
HERE, THESE PHPERS ON THE KNARSACK
PROBLEM MIGHT HELP YOU OUT.
LISTEN, T HAVE SIX OTHER
TABLES T0 GET T0—

—A\S FAST S POSSIBLE, (F (OURSE. WANT
SEMETHING ON Twer.wﬁ SALESNAN? /

n%ﬁ@%%%

RARRENI\E L er

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy sonme property.

Example Applications:

Subset-sum, Knapsack, variants, etc.

Find a combination of 2.15,2.75, 3.35, 3.55, 4.20, 5.80 which
adds to exactly 15.05. (1 Mixed fruit, 2 orders of hot wings, and
a sampler plate)

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy sonme property.

Example Applications:

Minimal Polynomials

Given a ~ —.78447320 — 1.96117174 - v/—1
find minpoly(a). (x3 4 2x — 7)

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy sonme property.

Example Applications:
Algebraic number manipulation

Is there a combination of 1, 52, 83 € Q(«) whose 23-adic
imageis21+7-23+11-2324...?

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy sonme property.

Example Applications:

Diophantine Approximation

Givenrq,...,ry € R find rationals which approximate them each
with the same small denominator.

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy sonme property.

Example Applications:
Euclidean Algorithm

Given a,b find gcd(a,b) =s-a+t-b.

Obligatory lattice intro
|

Lattice = discrete subgroup of R"

Obligatory lattice intro

Lattice = discrete subgroup of R" 5(

= {Zign Xibi X € Z}

If the bi’s are linearly independent,)(

they are called a basis .

Obligatory lattice intro

Lattice = discrete subgroup of R"
{Zign Xibi X € Z}

If the bi’s are linearly independent,
they are called a basis .

Bases are not unique, but they can be
obtained from each other by integer

transforms of determinant +1:

wos)=l2 o)z

|

Fad

What LLL actually does.

PN
b
. , , o L \
A lattice reduction algorithm is given \\
some basis and attempts to find a better ?
basis. o II

What LLL actually does.

A lattice reduction algorithm is given

some basis and attempts to find a better
basis.

The output is a reduced basis, which is
somewhat orthogonal.

AP

®

Fad

What LLL actually does.

A lattice reduction algorithm is given
some basis and attempts to find a better
basis.

The output is a reduced basis, which is
somewhat orthogonal.

In 1982 Lenstra, Lenstra, Lovasz gave

a polynomial time reduction algorithm
(LLL).

Fad

What LLL actually does.

One Popular Lattice Question:

»

What LLL actually does.

One Popular Lattice Question:

Shortest non-zero vector (SVP) P

»

What LLL actually does.

One Popular Lattice Question:

Shortest non-zero vector (SVP)

»

Is NP-hard to find.

What LLL actually does.

Te
One Popular Lattice Question:

.
Shortest non-zero vector (SVP) Py
Is NP-hard to find. i

»

LLL approximately solves SVP in

polynomial-time! [

What LLL actually does.

Te
One Popular Lattice Question: py
Shortest non-zero vector (SVP) L4
°

Is NP-hard to find. °
LLL approximately solves SVP in * B P
polynomial-time! 7

Y

When lucky and creative , approximate ,74\
can be enough.

Examples of combination problems — lattice problems

Given an approximation o ~ —.78447320 + 1.96117174 - /—1.
Find a minimal polynomial for «.

Examples of combination problems — lattice problems

Given an approximation o ~ —.78447320 + 1.96117174 - v/—1.
Find a minimal polynomial for «.

Make a lattice using o®, at, a?, o®:

0 10000000000 0 T
0 7844732000 —-19611717400

0 —32307963923 30769733412

1 85689463459 39223434588

[N ool
ook o
O, OO

Examples of combination problems — lattice problems

Given an approximation o ~ —.78447320 + 1.96117174 - v/—1.
Find a minimal polynomial for «.

Make a lattice using o®, at, a2, o®:

0 10000000000 0 T
0 7844732000 —-19611717400
0 —32307963923 30769733412
1 85689463459 39223434588

[N ool
ook o
O, OO

Let m npol y(a) =: Cp + C1X + Cox? + cax5.

Examples of combination problems — lattice problems

Given an approximation o ~ —.78447320 + 1.96117174 - v/—1.
Find a minimal polynomial for «.

Make a lattice using o®, at, a?, o®:

0 10000000000 0\"'
0 —7844732000 —-19611717400
0 —-32307963923 30769733412
1 85689463459 39223434588

O oOor
ook o
O, OO

Let m npol y(a) =: Cp + C1X + Cox? + Cax°.
Then (co, C1,C2,C3,€,¢) € L and is smaller in size than the other
vectors.

Examples of combination problems — lattice problems

Given an approximation o ~ —.78447320 + 1.96117174 - /—1.
Find a minimal polynomial for «.

The first 2 vectors found by LLL are:

7 2 0 1 541 —212 \'
84502 —313827 —101869 —77000 —106913 266772

Examples of combination problems — lattice problems

Given an approximation o ~ —.78447320 + 1.96117174 - v/—1.
Find a minimal polynomial for «.

The first 2 vectors found by LLL are:

7 2 0 1 541 -212 \'
84502 —313827 —101869 —77000 —106913 266772

We read this as saying that « is a root of x2 + 2x — 7.

Another example of LLL solving a problem

For the knapsack menu problem we had to find a combination
of 2.15,2.75, 3.35, 3.55,4.20, 5.80 which adds to exactly 15.05.

The lattice | created for this one:

1 00 00O O —1505
01 00O0O0O 215
0 010O0O0OTO 275
0 0010O0O 335
0 00O0O1O0O 355
0 00O0OO0OT1O0 420
0 00O0OTOIZ1 580

Note that scaling up that last entry means that short
vectors in the lattice will likely have 0 in the final column.

Another example of LLL solving a problem

For the knapsack menu problem we had to find a combination
of 2.15,2.75, 3.35, 3.55, 4.20, 5.80 which adds to exactly 15.05.

The output from LLL:

OORrRBRLRORO
|
ONNRRRLR
PP ONROR
ORNORRO
i eNeoNoNeoNoNa)

The second vector is the solution.
The Os in the final entries mean that this is difficult for LLL.

Intuitively, how does it work?

The input is a basis by, ..., by.

Intuitively, how does it work?

The input is a basis by, ..., by.

The goal is to push Gram-Schmidt length (length of a vector
modulo the previous vectors) from early vectors to late vectors.

Intuitively, how does it work?

The input is a basis by, ..., by.

The goal is to push Gram-Schmidt length (length of a vector
modulo the previous vectors) from early vectors to late vectors.

A reduced basis is, by definition, one in which G-S length never
drops too fast.

Intuitively, how does it work?

The inputis a basis by, ..., bgq.

Classical LLL works by making a succession of two elementary
moves:

e Size Reductions Subtract integer multiples of early
vectors from late vectors

e Swaps Switch the position of two basis vectors if a
minimum amount of G-S length can be pushed.

Intuitively, how does it work?

The input is a basis by, ..., by.

Classical LLL works by making a succession of two elementary
moves:

e Size Reductions Subtract integer multiples of early
vectors from late vectors

e Swaps Switch the position of two basis vectors if a
minimum amount of G-S length can be pushed.

Cost = number of swaps x cost of size-reduction.

Intuitively, how does it work?

The input is a basis by, ..., by.

Classical LLL works by making a succession of two elementary
moves:

e Size Reductions Subtract integer multiples of early
vectors from late vectors

e Swaps Switch the position of two basis vectors if a
minimum amount of G-S length can be pushed.

The moves of the algorithm combine to give a unimodular
transformation.

A tight example of LLL

10 0 0 O
10 20 0 O
10 20 5 O
10 20 5 1

A tight example of LLL

10 0 0 O 10 0 0 O
10 20 0 O 0 20 0 O
10 20 5 O 10 20 5 O
10 20 5 1 10 20 5 1

10
10
10
10

20
20
20

[6206) e e

= O OO

A tight example of LLL

10 0 0 O 10 O

0 20 0 O 0 20
10 20 5 O 0 O
10 20 5 1 10 20

o101 OO

= O OO

10
10
10
10
10

10

20
20
20

20
20

U1 O 01O 01 U1 OO

P OOOPFrOOOo

A tight example of LLL

10 O

0 20
10 20
10 20

= O OO

10 O
0 20
0 O

10 20

o101 OO

= O OO

10
10
10
10
10

10

20
20
20

20
20

U1 O 01O 01 U1 OO

P OOOPFrOOOo

A tight example of LLL

10
0
10
10
0
10
0
10

20
20
20

20
20

U1 O O 01l o1o1 OO

P OOOPFrOOO

10 O
0 20
0 O

10 20

= O OO

A tight example of LLL

0

10

00

10

0

10

O O+ O OO
omnwwno oo
[oNeolNololNelolNe]l
N N N
[eNeloloNoNoNol
i i
O O +d O OO
oOmnwLwoouw
O OO OO0OO0Oo
N NN NN
O OO oOoOOooo
— i i
O O+ O OO
oW o wnouw
O OO OO0 Oo
N NN NN
O OO oOoOooo
L B | i

A tight example of LLL

0

10

00

10

0

10

O O+ O OO
omnwwno oo
[oNeolNololNelolNe]l
N N N
[eNeloloNoNoNol
i i

O O +d O OO
oOmnwLwoouw
O OO OO0OO0Oo
N NN NN
O OO oOoOOooo

— i i
OO -4 000« o0O0o
oMWW owwouwmLwmwo
OO0 OO0 O0O OO0
N NN NN
OO O OO0 0O0 oo
L B | i i

0 20 0 O

A tight example of LLL

0

10

00

10

0

10

coHdoOoO -
oMW O oo
Ocoooooo
« « ~
Ooooooo
et =
-
OCoHdo0O0O0O—A o goo
OCWLWLWWLWOOWW oo o
cleReReReR=X=)
SRS AR Ceeg
Ooooooo
— - — - @090
(\
O0OHdOoOO0OOAdO0OO0OHO
OO OWLWOWL IO OO
OO0 O0O0O0OO0O0O0O0O
SRS IR «
clcNeoNoNoNoNoNeRoRoNo)
Jd9 99 = =

A tight example of LLL

0

10

00

10

0

10

|

coHdoOoO -
—“ o0 o0o
oMW O oo
ownwoo
Ocoooooo
« « ~ cooQ
Ooooooo
et = cooo
-
(\
-
OCoHdo0O0O0O—A o goo
OCWLWLWWLWOOWW oo o
cleReReReR=X=)
SRS AR Ceeg
Ooooooo
— - — - @090
(\
O0OHdOoOO0OOAdO0OO0OHO
OO OWLWOWL IO OO
OO0 O0O0O0OO0O0O0O0O
SRS IR «
clcNeoNoNoNoNoNeRoRoNo)
Jd9 99 = =

Bounding Switches/Swaps and a visualization of LLL

The height of each column is log(]| bf ||) < 5.
Every iteration/switch increases a G-S norm by a constant factor.
LLL[82] uses this to bound the number of swaps: O(d?3).

0 switches

ks

Bounding Switches/Swaps and a visualization of LLL

The height of each column is log(]| bf ||) < 5.
Every iteration/switch increases a G-S norm by a constant factor.
LLL[82] uses this to bound the number of swaps: O(d?3).

1 switch

L

Bounding Switches/Swaps and a visualization of LLL

The height of each column is log(]| bf ||) < 5.
Every iteration/switch increases a G-S norm by a constant factor.
LLL[82] uses this to bound the number of swaps: O(d?3).

2 switches

ot
ezt

Bounding Switches/Swaps and a visualization of LLL

The height of each column is log(]| bf ||) < 5.
Every iteration/switch increases a G-S norm by a constant factor.
LLL[82] uses this to bound the number of swaps: O(d?3).

(5 switches

i
T

:/8+...

Bounding Switches/Swaps and a visualization of LLL

The height of each column is log(]| bf ||) < 5.
Every iteration/switch increases a G-S norm by a constant factor.
LLL[82] uses this to bound the number of swaps: O(d?3).

B + 1 switches

Bot
Lo

:/8+...

Bounding Switches/Swaps and a visualization of LLL

The height of each column is log(]| bf ||) < 5.
Every iteration/switch increases a G-S norm by a constant factor.
LLL[82] uses this to bound the number of swaps: O(d?3).

B + 2 switches

ok
1

:/8+...

Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(]| bf ||) < 5.
Every iteration/switch increases a G-S norm by a constant factor.
LLL[82] uses this to bound the number of swaps: O(d?3).

B + 3 switches

5

=0B8+28+---

Bounding Switches/Swaps and a visualization of LLL

The height of each column is log(]| bf ||) < 5.
Every iteration/switch increases a G-S norm by a constant factor.
LLL[82] uses this to bound the number of swaps: O(d?3).

4 switches
B+ 4 swi _ 528t

8 Q 5 c4(d=1)p
8

Visual presentation of classic LLL

log || b ||

G-S norms of generic input
basis

This is a picture showing logs
of G-S norms.

A reduced basis would have a
minimum possible slope (e.g., -1).

Visual presentation of classic LLL

log || by ||

This is a picture showing logs
of G-S norms.

T~
i A reduced basis would have a
Reduced output = minimum possible slope (e.g., -1).
G-S can’t drop too fast

Visual presentation of classic LLL

log || by ||

T~
Reduced output =
G-S can’t drop too fast

This gives a short vector because:

Visual presentation of classic LLL

log || by ||

T~
Reduced output =
G-S can’t drop too fast

This gives a short vector because:

Smallest G-S vector is smaller than
every vector in L

Visual presentation of classic LLL

tog | b7 || o
This gives a short vector because:

Smallest G-S vector is smaller than
™~ every vector in L
Reduced output =
G-S can’t drop too fast

G-S vectors aren’'t generally in L but
b =bsisinL

Complexity Bounds for reduction algorithms

Given any matrix B € Zgq4 with || B || < 27 whose columns
give the lattice basis.

Find BU whose columns are a reduced basis of the same
lattice.

e L3 costs Poly(d) - 5°.
e L?/H-LLL cost Poly(d) - #2.
e L'moves this to Poly(d) - s(119)

To the new stuff!

Welcome to the second chapter of the talk, the reward for
experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions:
from reduced to reduced

To the new stuff!

Welcome to the second chapter of the talk, the reward for
experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions:
from reduced to reduced

2. Introduce recent truncation-friendly version of reduction.

To the new stuff!

Welcome to the second chapter of the talk, the reward for

experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions:

from reduced to reduced
2. Introduce recent truncation-friendly version of reduction.
3. Show the new beautiful tools we made for lift-reduction.

To the new stuff!

Welcome to the second chapter of the talk, the reward for
experts.
A road-map of this section:

1.

Present LLL as a sequence of lift-reductions:
from reduced to reduced

Introduce recent truncation-friendly version of reduction.
Show the new beautiful tools we made for lift-reduction.
Give the new complexities!

Find reduced, deform, reduce again

Old thinking:
1. Input matrix B, not reduced
2. Begin working on vectors of B
3. Until BU reduced

Find reduced, deform, reduce again

New thinking:
1. Begin with reduced B
2. Deform it: o,B
3. Reduce the deformation: ¢,BU reduced

Lift-Reduction

e We call multiplying an entry of each vector by a power of 2
a lift .

Lift-Reduction

e We call multiplying an entry of each vector by a power of 2
a lift .

2[
. - 1
e As a matrix thatis: o, = ! .]
1

Lift-Reduction

e We call multiplying an entry of each vector by a power of 2
a lift .

2(
. - 1
e As a matrix thatis: o, = ! .]
1

e We’'ll analyze the impact of this deformation on reduced
bases.

Lift-Reduction

We call multiplying an entry of each vector by a power of 2

a lift.

2(
. . 1
As a matrix that is: o, =

1
We’'ll analyze the impact of this deformation on reduced
bases.

We call Lift-Reduction the act of reducing ¢,B when B
was already reduced.

An example: Triangular

Not Reduced

123456 60123 -54127 23177
0 54321 21792 —15211
0 0 321 123
0 0 0 51234

An example: Triangular

Not Reduced

123456 60123 -—-54127 23177
0 54321 21792 15211
0 0 321 123
0 0 0 51234

Reduced

51234

An example: Triangular

Not Reduced

123456 60123 -—-54127 23177
0 54321 21792 15211

0 0 321 123
0 0 0 51234
Reduced
321 123

0 51234

An example: Triangular

Not Reduced

123456 60123 -—-54127 23177
0 54321 21792 15211

0 0 321 123
0 0 0 51234
Reduced
321 123

0 51234

An example: Triangular

Not Reduced

123456 60123 -—-54127 23177
0 54321 21792 15211
0 0 321 123
0 0 0 51234

Reduced

54321 21792 —-.15211
0 321 123
0 0 51234

An example: Triangular

Not Reduced

123456 60123 -—-54127 23177
0 54321 21792 15211
0 0 321 123
0 0 0 51234

Reduced

318 10419 -4156
1560 —-2184 1059
0 0 51234

An example: Triangular

Not Reduced

123456 60123 -54127 23177
0 54321 21792 —15211

0 0 321 123
0 0 0 51234
Reduced
123456 .060123 —.054127 .023177
0 318 10419 —4156
0 1560 —2184 1059

0 0 0 51234

So what?

Now each lift reduction can be attacked aggressively.
T

0 0 0 200001
1 00 90102
0 10 90403 | (4swaps)
0 0 1 90904

So what?

Now each lift reduction can be attacked aggressively.
T

0 0 0 200001
1 0 0 90102

0 10 90403 | (4swaps)
0 0 1 90904

0 0 0 200"

100 9

010 90

001 90

So what?

Now each lift reduction can be attacked aggressively.
200001
90102
90403
90904

0

OOPFr O OO0k

0

OPrP OO0 OFr O

0
0
0
1
0
0
0
1

200
90
90
90

T

T

(24 swaps)
-1 1 0
-1 0 1

3 3 3
-6 -7 -7

So what?

Now each lift reduction can be attacked aggressively.

0

OOPFr O OO0k

N
[
P

0

OPrP OO0 OFr O

o

0
0
0
1
0
0
0
1

= O

T

200001

90102

90403 (24 swaps)

90904
200" /-1 1 0 0\

90 L0 0y
90 3 3 3 10 P
90 6 -7 -7 0

301 \'

802

So what?

Now each lift reduction can be attacked aggressively.
T

0 0 0 200001
10 0 90102

0 10 90403 | (4swaps)

0 0 1 90904
000200\ /-1 1 0 O\
100 90 101 0 Ly
010 90 3 3 3 10 P
00 1 90 6 -7 -7 0
1102301\ / 5 -8 3 -2 T(sta 5
1 0 1 802 8 13 -5 —97 P

(First block only)

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.

General reduction as a sequence of lift-reduction

Any triangular B can be reduced with a series of lift-reductions.

1 B4 d # O OH#H | H#H
. I
1 b3z # | # [“T}
1 boo | #
L 1] L b17l _

General reduction as a sequence of lift-reduction

Any triangular B can be reduced with a series of lift-reductions.

1 by.d # | ##
I
1 b3z | # # [0’ }
2% <1 #
L 1 | | bl’l |

General reduction as a sequence of lift-reduction

Any triangular B can be reduced with a series of lift-reductions.

! boa ... # | # #
|
1 1 b3z | # # [I]
1 ‘ang’U’

General reduction as a sequence of lift-reduction

Any triangular B can be reduced with a series of lift-reductions.

Lift-reduction: B — ¢,B — ¢,BU

Graphical view of lift-reduction
logR;; = log || b} |

\

Lift-reduction: B — ¢,B — ¢,BU

Graphical view of lift-reduction
log Ri’7i

\}*gT

0B = Q'R

Lift-reduction: B — ¢,B — ¢,BU

Graphical view of lift-reduction
log R,

\

\

\

0/BU = Q"R"

Truncations and a weakening of reduction

e We must work with truncated entries.

Truncations and a weakening of reduction

e We must work with truncated entries.

e Truncations hurt LLL-reduction (small roundings send a
reduced basis to an unreduced basis).

Truncations and a weakening of reduction

e We must work with truncated entries.

e Truncations hurt LLL-reduction (small roundings send a
reduced basis to an unreduced basis).

¢ A new sense of reduction is truncation friendly
but with all of the perks, thanks to [Chang, Stehlé, Villard]

Truncations and a weakening of reduction

We must work with truncated entries.

Truncations hurt LLL-reduction (small roundings send a
reduced basis to an unreduced basis).

A new sense of reduction is truncation friendly
but with all of the perks, thanks to [Chang, Stehlé, Villard]

I'll denote a truncation of M by M + AM
So now, B ‘reduced’ = B + AB reduced.

The new reduction, graphically

i p
/ 0 \D OZ\D /{é

L NEQ S b

(1,1/2,0) (0,1/2,0) (6,m,0)

Hermite LLL82 Schnorr'88 [C-S-V'10]

Benefits of lift reduction

Now I'll show you the (super-cool) tools we introduce for
analyzing lift-reductions.

Note that these tools are more general than L.

So remember, use lift-reduction whenever you analyze LLL.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction’ you get all of
these tools.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction’ you get all of
these tools.

For B reduced, o, := diag(2%,1,...,1), and U any matrix such
that
o¢BU isreduced.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction’ you get all of
these tools.

For B reduced, o, := diag(2%,1,...,1), and U any matrix such
that
o¢BU isreduced.

. t+c-d 1ol
o (Uil < 27 g

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction’ you get all of
these tools.

For B reduced, o, := diag(2%,1,...,1), and U any matrix such
that
o¢BU isreduced.

. t+c-d 1ol
o (Uil < 27 g

e 0¢(B + AB)U is reduced.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction’ you get all of
these tools.

For B reduced, o, := diag(2%,1,...,1), and U any matrix such
that
o¢BU isreduced.

. t+c-d 1ol
o (Uil < 27 g

e 0¢(B + AB)U is reduced.
e 0,B(U + AU) is reduced.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction’ you get all of
these tools.

For B reduced, o, := diag(2%,1,...,1), and U any matrix such
that
o¢BU isreduced.

1oy
.| < pt+cd 1
Uil < 27 e

o¢(B + AB)U is reduced.
0/B(U + AU) is reduced.
U + AU is unimodular if U was.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction’ you get all of
these tools.

For B reduced, o, := diag(2%,1,...,1), and U any matrix such
that
o¢BU isreduced.

1oy
.| < pt+cd i
Uil < 27 e

o¢(B + AB)U is reduced.

0/B(U + AU) is reduced.

U + AU is unimodular if U was.

U can be adjusted and stored on ¢ + ¢ - d-bits per entry

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction’ you get all of
these tools.

For B reduced, o, := diag(2%,1,...,1), and U any matrix such
that
o¢BU isreduced.

‘Uhj‘ < 2£+c-d%
o¢(B + AB)U is reduced.

0/B(U + AU) is reduced.

U + AU is unimodular if U was.

U can be adjusted and stored on ¢ + ¢ - d-bits per entry

cond(o,B) < 2+<cond(B)

Bounding lift-reduction U-transformations

For 0,BU with B = QR we prove: |U; | < 2£+C'd%

Bounding lift-reduction U-transformations

For 0,BU with B = QR we prove: |U; | < 2‘+C'd%

Blocks in B:
\

\

Bounding lift-reduction U-transformations

For 0,BU with B = QR we prove: |U; | < 2‘+C'd%

Block diagonal U:

Blocks in B:
\
U Uy Us
Ue
\

U1, Uy, Ug small
U,, Us medium
Uz large

Allows truncations of U

Let B and o,BU be reduced.

Allows truncations of U

Let B and o,BU be reduced.

For any AU with AU; ;/U;; < e (entry-wise perturbations)

Allows truncations of U

Let B and o,BU be reduced.
For any AU with AU; ;/U;; < e (entry-wise perturbations)
We show:

oB(U + AU) is aso reduced

Allows truncations of U

Let B and o,BU be reduced.
For any AU with AU; ;/U;; < e (entry-wise perturbations)
We show:

oB(U + AU) is aso reduced

and:
(U + AU) is unimodular

Can create efficient U-transformations

U + AU will reduce so we can make an efficient U.

) Block diagonal U:
Visual blocks:

\
U; Uy Uz
\ U= Us Us
Us
i Uq, Uy, Ug small

U,, Us medium
Us large

Can create efficient U-transformations

U + AU will reduce so we can make an efficient U.

Visual blocks: U+ AU:
\

\ 01 02 . 2ka 03 . 2k
04 05 . ke

— Us

0; small

Allows adjustments of B

e By mastering U we can also master B.

Allows adjustments of B

e By mastering U we can also master B.
e When B and ¢,BU are reduced

Allows adjustments of B

e By mastering U we can also master B.
e When B and ¢,BU are reduced
e Then for AB with AB;/B; < € (column-wise perturbations)

Allows adjustments of B

By mastering U we can also master B.

When B and ¢,BU are reduced

Then for AB with AB;/B; < ¢ (column-wise perturbations)
We show:

o¢(B + AB)U is reduced

Numerical Stability

e Inf pLLL the precision needed is related to the induced
Condition number of B.

Numerical Stability

e Inf pLLL the precision needed is related to the induced
Condition number of B.

e For B = QR let Cond(B) :=| |R| - [R~[||.

Numerical Stability

e Inf pLLL the precision needed is related to the induced
Condition number of B.

e For B = QR let Cond(B) :=| |R| - |[R7%| ||.
e The higher Cond(B) the more precision f pLLL needs.

Numerical Stability

In f pLLL the precision needed is related to the induced
Condition number of B.

For B = QR let Cond(B) :=|| |R|-|R7Y| ||.
The higher Cond(B) the more precision f pLLL needs.
A reduced B is well-conditioned (= 2°9(),

Numerical Stability

In f pLLL the precision needed is related to the induced
Condition number of B.

For B = QR let Cond(B) :=|| |R|-|R7Y| ||.
The higher Cond(B) the more precision f pLLL needs.
A reduced B is well-conditioned (= 2°9(),

We master this when deforming:
Cond(o¢B) = 2¢+¢dCond(B)

Put the tools to use

large lifts

Let's try lift-reducing
using recursion.

Y

small lifts

A recursive lifting tree

Put the tools to use

input: B reduced and
lifting target £

goal: U such that o,BU
is reduced

large lifts

Y

small lifts

nodes send o, reduced — reduced

A recursive lifting tree

Put the tools to use

input: B reduced and
lifting target £

goal: U such that o,BU
is reduced

large lifts

Y

small lifts

oyB

nodes send o, reduced — reduced

A recursive lifting tree

Put the tools to use

large lifts O'gB

input: B reduced and /

lifting target ¢ 1B

goal: U such that o,BU
is reduced

nodes send o, reduced — reduced

small lifts

B reduced = B + AB reduced

Put the tools to use

input: B reduced and
lifting target ¢

goal: U such that o,BU
is reduced

large lifts

small lifts

o/B

Vi

o¢/2|B]

nodes send o, reduced — reduced

B + AB lifted

Put the tools to use

large lifts O'gB

input: B reduced and /

lifting target ¢ o¢/2|BJUg

goal: U such that o,BU
is reduced

nodes send o, reduced — reduced

small lifts

B + AB lift-reduced

Put the tools to use

large lifts U@BU]_

input: B reduced and /

lifting target ¢ o¢/2|BJUg

goal: U such that 0,BU
is reduced

Y nodes send o, reduced — reduced
small lifts

0¢/2(B + AB)U; red. = o,/,BU; red.

Put the tools to use

large lifts O'g/z(O’g/zBUl)
input: B reduced and /
lifting target ¢ o¢/2|BJUg
goal: U such that 0,BU
iS reduced nodes send o, reduced — reduced
small lifts

or = 05/2, now a smaller lift

Put the tools to use

input: B reduced and
lifting target £

goal: U such that ¢,BU
is reduced

large lifts

small lifts

og/2[BJUg

nodes send o, reduced — reduced

andsoon...

/ 0¢/2(0¢/2BU1)

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced

1. leaf: if £ < d then reduce o/B; return U

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced

2. Lift-L* on (B 4+ AB), target ¢/2; get U;

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced

2. Lift-L* on (B 4+ AB), target ¢/2; get U;
3. Compute B; := 04/,BU; weakly reduced

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced

2. Lift-L* on (B 4+ AB), target ¢/2; get U;
3. Compute B; := 04/,BU; weakly reduced
4. Lift-L* on (By + ABy), target £/2; return U,

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced

a bk~ wn

Lift-L* on (B + AB), target ¢/2; get U;
Compute B; := 0,/,BU; weakly reduced
Lift-L* on (By + ABy), target £/2; return U,
return U,U,

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced

1. leaf: if £ < d then reduce o/B; return U

2. Lift-L* on (B 4+ AB), target ¢/2; get U;

3. Compute B; := 04/,BU; weakly reduced
4. Lift-L* on (By + ABy), target £/2; return U,
5. return U;U,

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced

1.
2.
3.

4.
5.

leaf: if £ < d then reduce ¢,B; return U
Lift-L* on (B 4+ AB), target //2; get U,
Compute B, := 0,/,,BU; weakly reduced
Lift-L* on (B; + AB,), target ¢/2; return U,
return U,U,

Three problems:
Problem 1: Are we reduced enough? (Truncations weaken)

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced

1.
2.
3.

4.
5.

leaf: if / < d then reduce o,B; return U
Lift-L* on (B + AB), target //2; get U;
Compute B; := 0,/,,BU; weakly reduced
Lift-L* on (By + ABy), target £/2; return U,
return U,U,

Three problems:
Problem 2: Reduce leaf paying ¢ not 3

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L?
Input: B reduced with || B ||< 27 and target lift ¢
Output: unimodular U with ¢,BU reduced
1. leaf: if £ < d then reduce ¢,/B; return U
2. Lift-L* on (B 4+ AB), target ¢/2; get U;
3. Compute By := 0y/,BU; weakly reduced
4. Lift-L* on (By + ABy), target £/2; return U,
5. return U,U,

Three problems:
Problem 3: Perform matrix multiplications paying ¢ not 3

New complexities

In these times B is d x d and || Bj [|< 2°.

Lift-reduction: given B =-reduced we find U such that ¢,BU is
=-reduced in time

@ <d3+6(d + 0+ 7) +d°M(0) log £ + ¢log(B + e))

Full-reduction: given any B we find U such that BU is
=-reduced in time

O(d 5+65 + dw-i—l-i—e/Bl—i-e)

Knapsack-reduction: for a knapsack-type lattice B we use
only time
O(dS—i—e + d4+eIB + dw[@l—i-e)

Future Directions

Internal to Lattice Reduction:

e Better preconditioning

e Dynamic switch decisions

e Numerically stable steps (maximize practical dimension)
o Parallelize (we all need to)

Future Directions

External to Lattice Reduction:

e Challenge Problems (Homomorphic Crypto Attacks)
e Adaptable to other NP approximations?
e Given a hammer. ..

Thank You

Thank you for your time!

Problem 1: Strengthen quality

e Morel, Stehlé, and Villard have worked on quickly
improving the quality of a reduced basis.

Problem 1: Strengthen quality

e By recognizing blocks of vectors one can carefully truncate
the input lattice.

Problem 1: Strengthen quality

e By recognizing blocks of vectors one can carefully truncate
the input lattice.

\

\

Problem 1: Strengthen quality

e By recognizing blocks of vectors one can carefully truncate
the input lattice.

Problem 1: Strengthen quality

e By recognizing blocks of vectors one can carefully truncate
the input lattice.

\

\

e Results in calling f pLLL on a single lattice with 5 = O(d)

Problem 2: Leaf paying ¢ not

e We have to reduce o4B without a 3 in the complexity.

Problem 2: Leaf paying ¢ not

e We have to reduce o4B without a 3 in the complexity.

e We adapt the Strengthening algorithm to the lift-reduction
case.

Problem 2: Leaf paying ¢ not

e We have to reduce o4B without a 3 in the complexity.

e Blocks are deformed by o, but remain somewhat
preserved.

Problem 2: Leaf paying ¢ not

e We have to reduce o4B without a 3 in the complexity.

e Blocks are deformed by o, but remain somewhat
preserved.

Problem 2: Leaf paying ¢ not

e We have to reduce o4B without a 3 in the complexity.

e Blocks are deformed by o, but remain somewhat
preserved.

Problem 2: Leaf paying ¢ not

e We have to reduce o4B without a 3 in the complexity.

e Blocks are deformed by o, but remain somewhat
preserved.

\\

—

M~

e Results in single f pLLL with 3 = O(d + ¢)

Problem 3: Matrix products paying ¢ not (3

e We have two types of products: ¢,BU and U,U,.

Problem 3: Matrix products paying ¢ not (3

e We have two types of products: ¢,BU and U,U,.

e These are performed in every layer of recursion even when
£ is small.

Problem 3: Matrix products paying ¢ not (3

e We have two types of products: ¢,BU and U,U,.

* We know we can adjust B, so we begin with B := BE
where B has small entries and E = diag(2°:,...,2%)

Problem 3: Matrix products paying ¢ not (3

e We have two types of products: ¢,BU and U,U,.

 Any U we find can also be adjusted, we choose to take
U = FUF 1 format where F = diag(2",...,2%) and U has
small entries.

Problem 3: Matrix products paying ¢ not (3

We have two types of products: ¢,BU and U,U,.

We know we can adjust B, so we begin with B := BE
where B has small entries and E = diag(2°:,...,2%)

Any U we find can also be adjusted, we choose to take
U = FUF 1 format where F = diag(2",...,2%) and U has
small entries.

Now these products can be multiplied quickly (standard
matrix multiplication with small entries).

Problem 3: Matrix products paying ¢ not (3

We have two types of products: ¢,BU and U,U,.

We know we can adjust B, so we begin with B := BE
where B has small entries and E = diag(2°:,...,2%)

Any U we find can also be adjusted, we choose to take

U = FUF 1 format where F = diag(2",...,2%) and U has
small entries.

Any weaknesses introduced from our adjustments can be
fixed by strengthening (which returns these formats too).

