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LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Subset-sum, Knapsack, variants, etc.

Find a combination of 2.15,2.75,3.35,3.55,4.20,5.80 which
adds to exactly 15.05. (1 Mixed fruit, 2 orders of hot wings, and
a sampler plate)



LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Minimal Polynomials

Given α ≈ −.78447320− 1.96117174 ·
√
−1

find minpoly(α). (x3 + 2x − 7)



LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Algebraic number manipulation

Is there a combination of β1, β2, β3 ∈ Q(α) whose 23-adic
image is 21 + 7 · 23 + 11 · 232 + · · · ?



LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Diophantine Approximation

Given r1, . . . , rn ∈ R find rationals which approximate them each
with the same small denominator.



LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Euclidean Algorithm

Given a,b find gcd(a,b) = s · a + t · b.



Obligatory lattice intro

Lattice ≡ discrete subgroup of Rn

≡ {∑i≤n xib i : xi ∈ Z}

If the b i ’s are linearly independent,
they are called a basis .

Bases are not unique, but they can be
obtained from each other by integer
transforms of determinant ±1:
[
−2 1
10 6

]
=

[
4 −3
2 4

]
·
[

1 1
2 1

]
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What LLL actually does.

A lattice reduction algorithm is given
some basis and attempts to find a better
basis.

The output is a reduced basis, which is
somewhat orthogonal.

In 1982 Lenstra, Lenstra, Lovász gave
a polynomial time reduction algorithm
(LLL).
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What LLL actually does.

One Popular Lattice Question:

Shortest non-zero vector (SVP)

Is NP-hard to find.

LLL approximately solves SVP in
polynomial-time!

When lucky and creative , approximate
can be enough.
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√
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Find a minimal polynomial for α.

Make a lattice using α0, α1, α2, α3:


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1 0 0 0 10000000000 0
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Given an approximation α ≈ −.78447320+ 1.96117174 ·
√
−1.

Find a minimal polynomial for α.

Make a lattice using α0, α1, α2, α3:




1 0 0 0 10000000000 0
0 1 0 0 −7844732000 −19611717400
0 0 1 0 −32307963923 30769733412
0 0 0 1 85689463459 39223434588




T

Let minpoly(α) =: c0 + c1x + c2x2 + c3x3.
Then (c0, c1, c2, c3, ǫ, ǫ) ∈ L and is smaller in size than the other
vectors.
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Given an approximation α ≈ −.78447320+ 1.96117174 ·
√
−1.

Find a minimal polynomial for α.

The first 2 vectors found by LLL are:

(
−7 2 0 1 −541 −212

84502 −313827 −101869 −77000 −106913 266772

)T



Examples of combination problems → lattice problems

Given an approximation α ≈ −.78447320+ 1.96117174 ·
√
−1.

Find a minimal polynomial for α.

The first 2 vectors found by LLL are:

(
−7 2 0 1 −541 −212

84502 −313827 −101869 −77000 −106913 266772

)T

We read this as saying that α is a root of x3 + 2x − 7.



Another example of LLL solving a problem

For the knapsack menu problem we had to find a combination
of 2.15,2.75,3.35,3.55,4.20,5.80 which adds to exactly 15.05.

The lattice I created for this one:




1 0 0 0 0 0 0 −1505
0 1 0 0 0 0 0 215
0 0 1 0 0 0 0 275
0 0 0 1 0 0 0 335
0 0 0 0 1 0 0 355
0 0 0 0 0 1 0 420
0 0 0 0 0 0 1 580




T

Note that scaling up that last entry means that short
vectors in the lattice will likely have 0 in the final column.



Another example of LLL solving a problem

For the knapsack menu problem we had to find a combination
of 2.15,2.75,3.35,3.55,4.20,5.80 which adds to exactly 15.05.

The output from LLL:




0 1 −2 1 0 0 0 0
1 1 0 0 2 0 1 0
0 1 0 1 −2 −1 1 0
1 −1 1 2 1 1 0 0
1 −2 0 0 1 1 2 0
0 2 0 −1 −1 2 −1 0
0 0 −1 1 1 −1 0 −5




T

The second vector is the solution.
The 0s in the final entries mean that this is difficult for LLL.
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The input is a basis b1, . . . ,bd .

The goal is to push Gram-Schmidt length (length of a vector
modulo the previous vectors) from early vectors to late vectors.

A reduced basis is, by definition, one in which G-S length never
drops too fast.
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Classical LLL works by making a succession of two elementary
moves:

• Size Reductions Subtract integer multiples of early
vectors from late vectors

• Swaps Switch the position of two basis vectors if a
minimum amount of G-S length can be pushed.
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Cost ≈ number of swaps × cost of size-reduction.



Intuitively, how does it work?

The input is a basis b1, . . . ,bd .

Classical LLL works by making a succession of two elementary
moves:

• Size Reductions Subtract integer multiples of early
vectors from late vectors

• Swaps Switch the position of two basis vectors if a
minimum amount of G-S length can be pushed.

The moves of the algorithm combine to give a unimodular
transformation.
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Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).

β
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Bounding Switches/Swaps and a visualization of LLL
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Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).
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Visual presentation of classic LLL

log ‖ b∗i ‖

i
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-
```̀

HHH
m

m

Reduced output ⇒
G-S can’t drop too fast

This gives a short vector because:

Smallest G-S vector is smaller than
every vector in L

G-S vectors aren’t generally in L but
b∗

1 = b1 is in L



Complexity Bounds for reduction algorithms

Given any matrix B ∈ Zd×d with ‖ B ‖∞≤ 2β whose columns
give the lattice basis.

Find BU whose columns are a reduced basis of the same
lattice.

• L3 costs Poly(d) · β3.

• L2/H-LLL cost Poly(d) · β2.

• L̃1moves this to Poly(d) · β(1+ǫ)



To the new stuff!

Welcome to the second chapter of the talk, the reward for
experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions:
from reduced to reduced

2. Introduce recent truncation-friendly version of reduction.

3. Show the new beautiful tools we made for lift-reduction.

4. Give the new complexities!
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Find reduced, deform, reduce again

Old thinking:

1. Input matrix B, not reduced

2. Begin working on vectors of B

3. Until BU reduced

New thinking:

1. Begin with reduced B

2. Deform it: σℓB

3. Reduce the deformation: σℓBU reduced
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Lift-Reduction

• We call multiplying an entry of each vector by a power of 2
a lift .

• As a matrix that is: σℓ =




2ℓ

1
. . .

1




• We’ll analyze the impact of this deformation on reduced
bases.

• We call Lift-Reduction the act of reducing σℓB when B
was already reduced.
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0 54321 21792 −15211
0 0 321 123
0 0 0 51234
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An example: Triangular

Not Reduced



123456 60123 −54127 23177
0 54321 21792 −15211
0 0 321 123
0 0 0 51234




Reduced



.123456 .060123 −.054127 .023177
0 318 10419 −4156
0 1560 −2184 1059
0 0 0 51234






So what?

Now each lift reduction can be attacked aggressively.


0 0 0 200001
1 0 0 90102
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0 0 1 90904


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T
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
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5 −8 3 −2

−8 13 −5 −97
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(First block only)
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General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.
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General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.




1
. . .

2ℓ3

1
1







bd ,d . . . # # #
. . .

≤ 1 # #
σℓ1B

′U ′




[
I

U ′′

]



Lift-reduction: B → σℓB → σℓBU
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Lift-reduction: B → σℓB → σℓBU

Graphical view of lift-reduction
log R′′

i ,i
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σℓBU = Q′′R′′



Truncations and a weakening of reduction

• We must work with truncated entries.

• Truncations hurt LLL-reduction (small roundings send a
reduced basis to an unreduced basis).

• A new sense of reduction is truncation friendly
but with all of the perks, thanks to [Chang, Stehlé, Villard]

• I’ll denote a truncation of M by M +∆M

• So now, B ‘reduced’ ⇒ B +∆B reduced.
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The new reduction, graphically
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Benefits of lift reduction

Now I’ll show you the (super-cool) tools we introduce for
analyzing lift-reductions.

Note that these tools are more general than L̃1.

So remember, use lift-reduction whenever you analyze LLL.



Overview of benefits of lift reduction

Whenever you can find a way to use ‘lift reduction’ you get all of
these tools.

For B reduced, σℓ := diag(2ℓ,1, . . . ,1), and U any matrix such
that

σℓBU is reduced.

• |Ui ,j | ≤ 2ℓ+c·d ‖b∗
j ‖

‖b∗
i ‖

• σℓ(B +∆B)U is reduced.

• σℓB(U +∆U) is reduced.

• U +∆U is unimodular if U was.

• U can be adjusted and stored on ℓ+ c · d -bits per entry

• cond(σℓB) ≤ 2ℓ+ǫcond(B)
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Bounding lift-reduction U-transformations

For σℓBU with B = QR we prove: |Ui ,j | ≤ 2ℓ+c·d Rj,j
Ri,i

Blocks in B:
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Allows truncations of U

Let B and σℓBU be reduced.

For any ∆U with ∆Ui ,j/Ui ,j ≤ ǫ (entry-wise perturbations)

We show:

σℓB(U +∆U) is also reduced

and:
(U +∆U) is unimodular
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Can create efficient U-transformations

U +∆U will reduce so we can make an efficient U.

Visual blocks:
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Can create efficient U-transformations

U +∆U will reduce so we can make an efficient U.

Visual blocks:
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U +∆U:




Û1 Û2 · 2k2 Û3 · 2k3

Û4 Û5 · 2k2

Û6




Ûi small



Allows adjustments of B

• By mastering U we can also master B.

• When B and σℓBU are reduced

• Then for ∆B with ∆Bj/Bj ≤ ǫ (column-wise perturbations)

• We show:

σℓ(B +∆B)U is reduced
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Numerical Stability

• In fpLLL the precision needed is related to the induced
Condition number of B.

• For B = QR let Cond(B) :=‖ |R| · |R−1| ‖.

• The higher Cond(B) the more precision fpLLL needs.

• A reduced B is well-conditioned (≈ 2O(d)).

• We master this when deforming:
Cond(σℓB) = 2ℓ+c·dCond(B)
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Put the tools to use

Let’s try lift-reducing
using recursion.
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Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:
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1. leaf: if ℓ ≤ d then reduce σℓB; return U
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5. return U1U2

Three problems:
Problem 1: Are we reduced enough? (Truncations weaken)



Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced
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Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:
Problem 3: Perform matrix multiplications paying ℓ not β



New complexities

In these times B is d × d and ‖ Bj ‖≤ 2β.
Lift-reduction: given B Ξ-reduced we find U such that σℓBU is
Ξ-reduced in time

O
(

d3+ǫ(d + ℓ+ τ) + dωM(ℓ) log ℓ+ ℓ log(β + ℓ)
)

Full-reduction: given any B we find U such that BU is
Ξ-reduced in time

O(d5+ǫβ + dω+1+ǫβ1+ǫ)

Knapsack-reduction: for a knapsack-type lattice B we use
only time

O(d5+ǫ + d4+ǫβ + dωβ1+ǫ)



Future Directions

Internal to Lattice Reduction:

• Better preconditioning

• Dynamic switch decisions

• Numerically stable steps (maximize practical dimension)

• Parallelize (we all need to)



Future Directions

External to Lattice Reduction:

• Challenge Problems (Homomorphic Crypto Attacks)

• Adaptable to other NP approximations?

• Given a hammer. . .



Thank You

Thank you for your time!



Problem 1: Strengthen quality

• Morel, Stehlé, and Villard have worked on quickly
improving the quality of a reduced basis.

• By recognizing blocks of vectors one can carefully truncate
the input lattice.

• Results in calling fpLLL on a single lattice with β = O(d)
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Problem 2: Leaf paying ℓ not β
• We have to reduce σd B without a β in the complexity.

• We adapt the Strengthening algorithm to the lift-reduction
case.

• Blocks are deformed by σℓ but remain somewhat
preserved.

• Results in single fpLLL with β = O(d + ℓ)
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Problem 3: Matrix products paying ℓ not β

• We have two types of products: σℓBU and U1U2.

• These are performed in every layer of recursion even when
ℓ is small.

• We know we can adjust B, so we begin with B := B̂E
where B̂ has small entries and E = diag(2e1 , . . . ,2ed )

• Any U we find can also be adjusted, we choose to take
U = FÛF−1 format where F = diag(2f1 , . . . ,2fd ) and Û has
small entries.

• Now these products can be multiplied quickly (standard
matrix multiplication with small entries).

• Any weaknesses introduced from our adjustments can be
fixed by strengthening (which returns these formats too).
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