
Some ideas for efficient implementation of
algorithms for polynomial matrix computations

SageFlintDays, University of Warwick, December 18, 2011

Arne Storjohann
University of Waterloo

Introduction: integers versus univariate polynomials

Integers:

• well suited ring for a binary computer
→ array of limbs of 64 bits each

• primes are quite dense
→ prime number theorem: there are about N/ lnN primes ≤ N
→ more than 1015 64-bit primes
→ enough for all practical purposes

Polynomials K[x]:

• dense, sparse, supersparse (lacunary)?

• what is the coefficient field K?
→ K= Z/(p), K= GF(2), K=Q

→ K an extension field of one of the above

• and then. . . what about
multivariate? coeffcient ring not a field?

1

The core problem: Polynomial matrix multiplication

Representation:
•matrices of polynomials:

F =

[

x+1 4x2 +3x
4x2+3x+1 4x2+6x+2

]

• polynomials with matrix coefficients:

F =

[

0 4
4 4

]

x2 +

[

1 3
3 6

]

x+

[

1 0
1 2

]

• compact:
F =

[

0 4 1 3 1 0
4 4 3 6 1 2

]

Methods:

1. triply nested for loop using polynomial multiplication (easiest)

2. via integer matrix multiplication: bit packing (FLINT [Frederik J.])

3. evaluation and interpolation (asymtoticaly fastest)
→ in-place truncated FFT [Harvey and Roche, 2010]?

2

Organization of the Integer Matrix Library: IML

ATLAS/BLAS GMP Bignum

Word-Size
Linear Algebra

Nonsingular Solving over Z

Linear Algebra over Z

❄ ❄

✛

❄ ❄ ❄

❄

3

Organization of the Polynomial Matrix Library: PML?

ATLAS/BLAS FLINT

Matrix Multiplication
Modulo p

Nonsingular Solving over Z/(p)[x]

Linear Algebra over Z/(p)[x]

❄ ❄

✛

❄ ❄ ❄

❄

4

Example of linear solving: K= Z/(7), n = 5, d = 2

Input:

A =



















6x2 +6x+4 2x2+2x+5 3x2 +2x+1 5x+3 2x2+6x+6

4x2 +4x 2x2+5x+3 5x+4 3x2 +5x 4x2 + x+1

6x2 +2 2x2 + x+6 4x2 +2x+2 4x2 +5x+1 x2 + x

3x2+ x+4 5x+6 4x2 +2x+1 2x2 +6x+2 3x2 + x

x2+2x+6 2x2+5x+5 4x2 +4x 6 x2+ x+3



















b =



















x2 + x+2

5x2+ x+2

3x2 +3x+5

x2+5x+3

2x+2



















Output:

v := A−1b =























4x9+2x8+5x7+6x6+x5+3x4+6x3+2x+2
4x10+x9+3x8+4x7+4x6+2x5+6x4+6x3+2x2+5x+3

6x10+2x9+x7+3x6+x5+6x4+3x3+6x2+2x+1
4x10+x9+3x8+4x7+4x6+2x5+6x4+6x3+2x2+5x+3

x10+5x9+6x8+3x6+5x5+3x4+5x3+x2+3x+5
4x10+x9+3x8+4x7+4x6+2x5+6x4+6x3+2x2+5x+3

3x10+3x9+6x8+6x7+5x6+5x4+6x3+x2+x+2
4x10+x9+3x8+4x7+4x6+2x5+6x4+6x3+2x2+5x+3

5x10+4x9+5x8+2x7+x6+2x5+5x4+5x3+3x2+6x+4
4x10+x9+3x8+4x7+4x6+2x5+6x4+6x3+2x2+5x+3























5

Outline of Y -adic lifting for system solving

1. Radix expansion of solution: Y = x2

5x2+6x+3
x2+4x+3

≡ (1+3x)+(2+ x)Y +(1+5x)Y 2 (mod Y 3)

2. Radix conversion:

(1+3x)+(2+ x)Y +(1+5x)Y 2 = 1+3x+2x2+ x3+ x4+5x5

3. Rational function reconstruction:

5x2+6x+3
x2+4x+3

≡ 1+3x+2x2+ x3+ x4+5x5 (mod x5)

6

Nonsingular rational system solving over K[x] via lifting

Input: A ∈ K[x]n×n and b ∈ K[x]n×1 of degree d
Compute: A−1b ∈ K(x)
Method:

1. Choose Y ∈ K[x] such that gcd(Y,detA) = 1
Set k = ⌈2nd/degY⌉

2. Compute B = Rem(A−1,Y)

3. r := b
for i = 0 to k−1 do

vi := Rem(Br,Y) # degvi < degY
r := (r−Avi)/Y # degr < d

4. Reconstruct A−1b from A−1b≡ v0+ v1Y + · · ·+ vk−1Y k−1 mod Y k

→ what should degree of Y be?
→ what should factorization of Y be?

7

Lifting using a “lifting basis”

1. Select of modulus:
Y = (x−α1)(x−α2) · · ·(x−αdegY)
Z = (x−β1)(x−β2) · · ·(x−βd) with gcd(Z,Y) = 1

2. Initialization:
old: B := Rem(A−1,Y)
new: (B1, . . . ,BdegY) := ((A |x=α1)

−1, . . . ,(A |x=αdegY)
−1)

(C1, . . . ,Cd) := (A |x=β1, . . . ,A |x=βd
)

3(a). Lifting step:
old: vi := Rem(Br,Y)
new: ((vi) |x=α1, . . . ,(vi) |x=αdegY) := (B1r |x=α1, . . . ,BdegY rx=αdegY)

3(b). Residue update:
old: r := (r−Avi)/Y
new: r |x=β j:=(r |x=β j−C j(vi) |x=β j)Rem(Y−1,x−β j) for j = 1, . . . ,d

8

Lifting using a “lifting basis”: main work

2. Initialization:
→ degY matrix inversions over K

3(a). Lifting steps:
→ total 2nd matrix×vector products over K

3(b). Residue updates:
→ total 2nd× (d/degY) matrix×vector products over K

4. Reconstruct solution using interpolation + radix conversion + ra-
tional function reconstroction

Key optimizations:

• Choose degY to balance costs of phases 2 and 3.
→ can be automatically tuned

• Reduce the 2nd using vector rational function reconstruction.
→ decrease 2nd but increase cost of step 4
[Olesh & Storjohann, 2007]

9

Linearization for polynomial lattice basis reduction

First consider Euclidean algorithm over Z/(7)[x]
[

4x3 +6x2+5x+6

4x3 +2x2+3x+5

]

→

[

4x3 +6x2+5x+6

3x2 +5x+6

]

→

[

4x2 +4x+6

3x2 +5x+6

]

→ ·· · →

[

x+6
0

]

Same idea works for lattice reduction of matrices
(Note: [d]≡a polynomial of degree d)

A










[13] [13] [12] [12]
[13] [13] [12] [12]
[13] [13] [13] [12]
[13] [12] [12] [12]











→











[13] [13] [12] [12]
[13] [12] [12] [12]
[13] [13] [13] [12]
[13] [12] [12] [12]











→ ·· · →

R










[1] [1] [1] [1]
[2] [1] [1] [0]
[1] [2] [2] [0]
[1] [4] [1] [0]











Question: How to represent rows of the work matrix?
Idea: also used in earlier version of FLINT

[

3x2 +5x+1 4x+2

4x2+2 6x+2

]

→

[

3 5 1 0 4 2
4 0 2 0 6 2

]

10

Linearization for lattice reduction of matrices

First consider Euclidean algorithm over Z/(7)[x]
[

4x3 +6x2+5x+6

4x3 +2x2+3x+5

]

→

[

4x3 +6x2+5x+6

3x2 +5x+6

]

→

[

4x2 +4x+6

3x2 +5x+6

]

→ ·· · →

[

x+6
0

]

Same idea works for lattice reduction of matrices
(Note: [d]≡a polynomial of degree d)

A










[13] [13] [12] [12]
[13] [13] [12] [12]
[13] [13] [13] [12]
[13] [12] [12] [12]











→











[13] [13] [12] [12]
[13] [12] [12] [12]
[13] [13] [13] [12]
[13] [12] [12] [12]











→ ·· · →

R










[1] [1] [1] [1]
[2] [1] [1] [0]
[1] [2] [2] [0]
[1] [4] [1] [0]











Question: How to represent rows of the work matrix?
Idea: also used in earlier version of FLINT

[

3x2 +5x+1 4x+2

4x2+2 6x+2

]

→

[

3 5 1 0 4 2
4 0 2 0 6 2

]

11

From left equivalence to similarity

Recall companion matrix: 1×1 matrix of degree 4

[

x4+5x3+6x2+74x+72
]

←→ xI4−









−72
1 −74

1 −6
1 −5









Same idea works for matrices (sometimes): 2×2 matrix of degree 3

A
[

x3+2x2+6x+6 4x2+4x
2x2+5x+3 x3+5x+4

]

←→ xI6−

C
















−6 0
−3 −4

1 −6 −4
1 −5 −5

1 −2 −4
1 −2 0

















Idea: Compute detA by computing Frobenius form of C in time O((nd)3)
12

From left equivalence to similarity: general case
Input:

A =

[

5x2+4x+1 x+1

5x+1 2x+1

]

1. Random shift:

B = A |x=x−2=

[

5x2+5x+6 x+6

5x+5 2x+4

]

2. Revert:

C = x2B |x=1/x=

[

6x2+5x+5 6x2+ x

5x2+5x 4x2+2x

]

3. Normalize:

D =

[

6 6

5 4

]−1[

6x2+5x+5 6x2+ x

5x2+5x 4x2+2x

]

=

[

x2+4x+6 6x

5x+3 x2

]

13

Partial linearization

• Cost of many algorithm highly sensitive to degA

•What if some entries in A have large degree?

• Examples: [t]≡ a polynomial of degree t

A =













[0] [5] [18]
[0] [5] [18]

[0] [5] [18]
[6] [18]

[19]













A =













[19] [1] [5] [3] [19]
[4] [6] [3] [6] [0]
[0] [0] [0] [0] [0]
[17] [6] [0] [0] [0]
[19] [0] [0] [0] [0]













14

Partial column linearization

A












[0] [5] [18]
[0] [5] [18]

[0] [5] [18]
[6] [18]

[19]













←→

C




























[0] [4] [4] [0] [4] [4] [3]
[0] [4] [4] [0] [4] [4] [3]

[0] [4] [4] [0] [4] [4] [3]
[4] [4] [1] [4] [4] [3]

[4] [4] [4] [4]
−x5 1
−x5 1

−x5 1
−x5 1





























.

• degC = average column degree of A

• dimension of C is less than 2× dimension of A

• no computation required, only rewriting

• detC = detA , nullity(C) = nullity(A), C−1 =

[

A−1 ∗
∗ ∗

]

15

Partial row and column linearization

A =















[19] [1] [5] [3] [19]
[4] [6] [3] [6] [0]
[0] [0] [0] [0] [0]
[17] [6] [0] [0] [0]
[19] [0] [0] [0] [0]















C =

















































[4] [1] [4] [3] [4] [4] [4] [4] −x5

[4] [4] [3] [4] [0] [1] −x5

[0] [0] [0] [0] [0]
[4] [4] [0] [0] [0] [4] [4] [2] [1]
[4] [0] [0] [0] [0] [4] [4] [4]
− x5 1

−x5 1
−x5 1

−x5 1

[0] [4] 1 −x5

[4] 1 −x5

[4] 1
[1] 1

















































.

• dimension of C is < 3× (19+6+0+0+0)/5 = 15

16

