Toric Geometry in Sage and String/F-Theory Applications

Volker Braun

Dublin Institute for Advanced Studies (DIAS)

December 8, 2010

- Introduction
- Chow group and D-Branes at Singularities
- F-Theory and Discrete Wilson Lines
- 4 Landscaping

Toric Geometry

Definition (Toric Variety)

A *toric variety* is a variety with an algebraic $T = (\mathbb{C}^{\times})^n$ action such that there is a single n-dimensional orbit $\simeq T$.

Example

 \mathbb{P}^2 with the $(\mathbb{C}^{\times})^2$ -action

$$(\mathbb{C}^{\times})^2 \times \mathbb{P}^2 \to \mathbb{P}^2, \quad (\mu, \nu)([z_0 : z_1 : z_2]) = [z_0 : \mu z_1 : \nu z_2]$$

is a toric variety.

In the example, the top-dimensional orbit is $[1 : \mu : \nu]$.

Definition (Fan)

A *fan* is a collection of cones in a lattice $\simeq \mathbb{Z}^n$ such that

- Every face of a cone is another cone of the fan.
- Any two cones of a fan intersect in a common face.

Poset of Cones vs. Poset of Torus Orbits

d-dimensional cone

 \leftrightarrow n-d-dimensional torus orbit

Toric Geometry Wishlist

Want an efficient implementation of toric algorithms!

```
Integers & rational numbers
                                                    MPIR
                                             qmp,

    Lattices (Smith normal form, LLL)

                                                      nt.l
```

- Convex geometry (linear programs, dual description) cddlib, PPL, glpk, Polymake
- Lattices and polytopes (mixed integer programming) palp, PPL
- Triangulations

TOPCOM

Graphs (automorphisms)

nauty

Polynomials (Groebner bases)

Singular, M2

State of the Union

Toric geometry implementations suck!

- Bits & pieces implemented by different programs.
- No common framework.
- Reinventing the wheel.
- Either focus too narrow or too slow.

- Unit tests?
- Code review?
- Bug tracker?
- Documentation?
- Revision control system?

Sage (http://www.sagemath.org)

Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab. [W. Stein et al.]

- PythonEasy to write & easy to read!
- Cython Combine native C/C++ with Python.
- Incorporates many existing open-source packages.
- Batteries included.
 All necessary libraries, documentation,
- Software engineering best practices:
 - Code must have documentation.
 - Code must be peer reviewed.
 - Code must have an automated test.
 - Automated testing on a variety of architectures.

Toric Geometry in Sage

Goal: Implement all toric algorithms.

[VB and A. Novoseltsev]

- Polytopes
 Dual description, integral points, triangulations, graphics, ...
- Cones
 Convex geometry, Hilbert basis, lattice constructions, ...
- Fans
 Cone lattice, Stanley Reisner ideal, ...
- Toric varieties
 Cohomology, Chow group, Kähler/Mori cone,
- Toric divisors / sheaves
 Sheaf cohomology, Weil vs. Cartier, Chern classes, index theory, ...

Object-Oriented Programming

Data comes first!

```
sage: n = 5
sage: is_prime(n)  # procedural
True
sage: n.is_prime()  # object-oriented
True
```

Use tab completion to explore methods:

```
n = 5
n.is_
evaluate

n.is_idempotent

n.is_integral
n.is_irreducible
n.is_nilpotent
n.is_one

n.is_perfect_power n.is_pseudoprime
n.is_power n.is_square
n.is_power of n.is_squarefree
n.is_prime n.is_unit
n.is_prime_power n.is_zero
```

- Introduction
- Chow group and D-Branes at Singularities
- F-Theory and Discrete Wilson Lines
- 4 Landscaping

The Chow Group

$$A_k(X) = \left\{ ext{algebraic } k ext{-cycles} \right\} \Big/ \left\{ ext{rational equivalence} \right\}$$

- For example, $A_{n-1}(X) = (Weil)$ divisor class group.
- If the toric variety X is smooth, then $A_k(X) \simeq H^{2k}(X, \mathbb{Z})$.
- Works for singular toric varieties!

Engineering Singularities

Let's construct a Calabi-Yau variety with singularities. Idea:

- Start with 4-d toric variety with curve C of singularities.
- Calabi-Yau hypersurface D intersects C in some number $C \cdot D$ of points.

A Singular Toric Variety

The weighted projective space \mathbb{P}^4_{11133} has a curve of \mathbb{Z}_3 orbifold singularities:

Definition (Smooth cone)

- the rays generate all integral points.
- Equivalently, the torus orbit contains no singularities.

The Hilbert Basis of a Cone

Standard example:
$$\mathbb{C}^2/\mathbb{Z}_2$$
 =

The singular 3-cone of the 4-d fan:

This cone alone defines a $\mathbb{C}^3/\mathbb{Z}_3$ singularity.

 \Rightarrow A curve $C \simeq \mathbb{P}^1$ of $\mathbb{C}^3/\mathbb{Z}_3$ singularities in the 4-d toric variety.

Naive Intersection Computation

How often does C intersect the Calabi-Yau hypersurface D?

Use description of $H^{\bullet}(X)$ as quotient by Stanley-Reisner ideal:

$$H^{\bullet}(X,\mathbb{Q}) \simeq \mathbb{Q}[z_0,\ldots,z_d]/(SR+L)$$

where

- SR is the Stanley-Reisner ideal, and
- *L* is the ideal of linear equivalences.

Naive Intersection Computation cont'd

```
sage: P = ToricVariety(fan) # P^{11133}
sage: P.cohomology_basis()
(([1],), ([z4],), ([z4^2],), ([z4^3],), ([z4^4],))
sage: D = -P.K() # anticanonical divisor
sage: H = P.cohomology_ring()
sage: H(D) * H(C)
[9*z4^4]
sage: P.integrate( H(D) * H(C) )
```

Attention

Wrong! A variety with orbifold singularities does not have (integer) Poincaré duality!

Intersections in the Chow Group

In fact, the correct intersection number is $C \cdot D = 3$.

The correct intersection number can be computed using Chow homology, without resorting to Poincaré duality:

```
sage: P = ToricVariety(fan) # P^{11133}
sage: D = -P.K() # anticanonical divisor
sage: A = P.Chow_group()
sage: A.degree()
(Z, Z, Z, Z, Z)
sage: A(D)
(0 | 0 | 0 | 9 | 0 )
sage: A(C)
(0 | 1 | 0 | 0 | 0 | 0 )
sage: A(C).intersect_with_divisor(D)
(3 | 0 | 0 | 0 | 0 | 0 )
sage: A(C).intersect_with_divisor(D).count_points()
```

- Introduction
- Chow group and D-Branes at Singularities
- F-Theory and Discrete Wilson Lines
- Landscaping

F-Theory

F-theory compactification requires an elliptic fibration with

- X a 4-d Calabi-Yau variety, and
- B a 3-d variety.

ariety, and $\pi \downarrow B$

The discriminant

$$\Delta = \bigcup_i D_i \subset B$$

is where the fiber differs from T^2 .

Kodaira type of discriminant = (local) gauge group.

Surfaces with Fundamental Groups

The actual low energy gauge group depends on more (global) data.

- "split" vs. "non-split" discriminant.
- Discrete Wilson lines if $\pi_1(D_i) \neq 1$.
- For example: Enriques surface = $K3/\mathbb{Z}_2$.

Naive idea: Take quartic in $B = \mathbb{P}^3_{[x_0:x_1:x_2]}$ and divide out \mathbb{Z}_2 , acting freely on the quartic. Does not work!

Enriques surfaces are not free quotients of quartics.

An Enriques Surface

Let S be a quartic invariant under the \mathbb{Z}_4 action

$$g: \mathbb{P}^3 \to \mathbb{P}^3, \quad \left[x_0: x_1: x_2: x_3 \right] \mapsto \left[x_0: ix_1: i^2x_2: i^3x_3 \right]$$

Projects out the (0,2)-form on the quartic:

$$\Omega^{(2,0)} = \oint rac{\epsilon^{ijk\ell} x_i \, \mathsf{d} x_j \wedge \mathsf{d} x_k \wedge \mathsf{d} x_\ell}{q(x_0, x_1, x_2, x_3)}$$

- Curves of \mathbb{Z}_2 fixed points in \mathbb{P}^3 .
- S/\mathbb{Z}_4 is a singular Enriques surface

Toric Version

$$B = \mathbb{P}^3 / \mathbb{Z}_4$$
 as a toric variety.

- blue vertices = curves of Z₂ singularities
- $\bullet \ A_2(B) = \mathbb{Z} \times \mathbb{Z}_4$

ZCox homogeneous coordinates construction:

$$egin{aligned} B &= rac{\mathbb{C}^4 - \{0\}}{\mathsf{Hom}\left(A_2(X), \mathbb{C}^ imes
ight)} \ &= rac{\mathbb{C}^4 - \{0\}}{\mathbb{C}^ imes imes \mathbb{Z}_4} \end{aligned}$$

Toric Version

Resolution \hat{B} of $\mathbb{P}^3 / \mathbb{Z}_4$.

- Not crepant.
- Reflexive polytope.
- Proper transform D
 of singular Enriques D is smooth.
- Origin + 18 points.

Divisors on the Resolution

Homogeneous coordinates $\hat{z}_0, \ldots, \hat{z}_{17}$ of \hat{B} .

$$-K_{\hat{B}} = \sum_{i=0}^{17} V(\hat{z}_i)$$

 $\hat{D} = 4V(\hat{z}_0) + 2V(\hat{z}_4) + 4V(\hat{z}_6) + 3V(\hat{z}_7) + 3V(\hat{z}_8) + 2V(\hat{z}_9) + 2V(\hat{z}_{10}) + 2V(\hat{z}_{11}) + V(\hat{z}_{12}) + 2V(\hat{z}_{13}) + V(\hat{z}_{14})$

- Kähler cone is 15-d cone spanned by 169 rays.
- $-K_{\hat{B}}$, \hat{D} are on different faces of the Kähler cone.

Weierstrass Model

Every elliptic fibration Y has a Weierstrass model

$$\begin{split} W = & \Big\{ y^2 z = x^3 + a_1 x y z + a_2 x^2 z^2 + a_3 y z^3 + a_4 x z^4 + a_6 z^6 \Big\} \\ \subset & \mathbb{P} \left(\mathbb{O} + \mathbb{O}(-2K) + \mathbb{O}(-3K) \right) \end{split}$$

"model" in the sense of the MMP: W is birational to Y and "simpler".

Since we don't have a particular elliptic fibration in mind: Just construct Weierstrass model on \hat{B} .

Weierstrass Model cont'd

$$y^2z = x^3 + a_1xyz + a_2x^2z^2 + a_3yz^3 + a_4xz^4 + a_6z^6$$

To make sense globally, must chose

$$x \in \Gamma \mathcal{O}(-2K), \ y \in \Gamma \mathcal{O}(-3K), \ z \in \Gamma \mathcal{O} \quad \Rightarrow \quad a_{\ell} \in \Gamma \mathcal{O}(-\ell K)$$

Gauge group depends on degree of vanishing of a_{ℓ} along the Enriques surface \hat{D} .

$$\left\{ \begin{array}{l} \text{There exists a suitable} \\ \text{section for } a_{\ell} \text{ vanishing} \\ \text{to degree } \delta \text{ along } \hat{D} \end{array} \right\} \Leftrightarrow H^0 \big(- \ell K - \delta \hat{D} \big) \neq 0$$

The Smooth Enriques Surface in Sage

```
sage: rays = [(-3,-2,4), (0,1,0), (1,0,0), (2,1,-4),
    (-1,-1,2), (1,1,-2), (-2,-1,2), (-2,-1,3),
   (-1,-1,1), (-1,0,1), (-1,0,2), (0,0,-1), (0,0,1)
   (1,0,-2), (1,0,-1), (1,1,-1), (2,1,-3).
   (2,1,-2)1
sage: cones = [(0,3,11), (0,6,11), (5,6,11),
   (3,5,11), (0,3,8), (3,13,8), (4,13,8), (0,4,8),
   (2,3,16), (2,17,16), (3,5,16), (5,17,16),
   (4,13,14), (2,4,14), (2,3,14), (3,13,14),
   (5,6,9), (1,5,9), (0,1,9), (0,6,9), (0,4,7),
   (4,10,7), (0,1,7), (1,10,7), (1,5,15), (5,17,15)
   (1,2,15), (2,17,15), (4,10,12), (2,4,12),
   (1,10,12), (1,2,12)
sage: Bsmooth = ToricVariety(Fan(cones, rays))
sage: K = Bsmooth.K()
sage: Dsmooth = Bsmooth.divisor([4, 0, 0, 0, 2, 0]
   4, 3, 3, 2, 2, 2, 1, 2, 1, 0, 0, 01)
```

Sheaf Cohomology in Sage

For example, the sheaf cohomology groups of $O(3\hat{D} + 4K_{\hat{B}})$ are

```
sage: (3*Dsmooth+4*K).cohomology(dim=True)
(0, 0, 24, 0)
```

Compute a matrix whose entries are the relevant cohomology groups:

```
sage: matrix(ZZ, 5, 7, lambda d,1:
... len((-l*K-d*Dsmooth).sections()))
[ 1    9    35    91    189    341   559]
[ 0    0    2    18    60    140   270]
[ 0    0    0    0    3    27   85]
[ 0    0    0    0    0    4]
[ 0    0    0    0    0    0]
```

Result

	$\ell=1$	$\ell=2$	$\ell=3$	$\ell=4$	$\ell=5$	$\ell = 6$
$\delta = 0$	9	35	91	189	341	559
$\delta=$ 1	0	2	18	60	140	270
$\delta={f 2}$	0	0	0	3	27	85
$\delta=$ 3	0	0	0	0	0	4
$\delta \geq$ 4	0	0	0	0	0	0

Table: Number of sections of $O(-\ell K_{\hat{D}} - \delta \hat{D})$.

Comparing with Tate's table, we can have at most a SU(3) gauge group on the Enriques surface \hat{D} .

- Introduction
- Chow group and D-Branes at Singularities
- F-Theory and Discrete Wilson Lines
- 4 Landscaping

Landscape

Exercise

Repeat for all effective divisors in all toric 3-folds corresponding to reflexive polyhedra & find maximal possible gauge groups.

- Toric algorithm for effective cone.
- Discrete symmetries and overcounting.

Discrete Symmetries

The symmetries of the polytope ∇ must be modded out.

```
For example, \hat{B} = \widehat{\mathbb{P}^3}/\mathbb{Z}_4:

sage: rays = Bsmooth.fan().rays()
sage: nabla = Polyhedron(vertices=rays)
sage: Aut = nabla.restricted_automorphism_group()
sage: Aut
Permutation Group with generators [(2,4)(6,7), (1,2)(3,4)(5,6)(7,8), (1,3)(5,8)]
sage: Aut.is_isomorphic( DihedralGroup(4) )
True
```