= Hall-Littlewood Polynomials = == P basis == {{{ sage: HallLittlewoodP(QQ) Hall-Littlewood polynomials in the P basis over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: HallLittlewoodP(QQ, t=-1) Hall-Littlewood polynomials in the P basis with t=-1 over Rational Field sage: HLP = HallLittlewoodP(QQ) sage: s = SFASchur(HLP.base_ring()) sage: s(HLP([2,1])) (-t^2-t)*s[1, 1, 1] + s[2, 1] }}} The Hall-Littlewood polynomials in the P basis at $t = 0$ are the Schur functions. {{{ sage: HLP = HallLittlewoodP(QQ,t=0) sage: s = SFASchur(HLP.base_ring()) sage: s(HLP([2,1])) == s([2,1]) True }}} The Hall-Littlewood polynomials in the P basis at $t = 1$ are the monomial symmetric functions. {{{ sage: HLP = HallLittlewoodP(QQ,t=1) sage: m = SFAMonomial(HLP.base_ring()) sage: m(HLP([2,2,1])) == m([2,2,1]) True }}} == Q basis == The Q basis is dual to the P basis with respect to the Hall-Littlewood scalar product $<,>_t$. {{{ sage: HallLittlewoodQ(QQ) Hall-Littlewood polynomials in the Q basis over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: HallLittlewoodQ(QQ, t=-1) Hall-Littlewood polynomials in the Q basis with t=-1 over Rational Field }}} {{{ sage: HLP = HallLittlewoodP(QQ) sage: HLQ = HallLittlewoodQ(QQ) sage: HLP([2,1]).scalar_t(HLQ([2,1])) 1 sage: HLP([2,1]).scalar_t(HLQ([1,1,1])) 0 sage: HLP([2,1]).scalar_t(HLQ([3])) 0 }}} == Qp basis == The Qp basis is dual to the P basis with respect to the standard Hall scalar product. {{{ sage: HallLittlewoodQp(QQ) Hall-Littlewood polynomials in the Qp basis over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: HallLittlewoodQp(QQ, t=-1) Hall-Littlewood polynomials in the Qp basis with t=-1 over Rational Field }}} {{{ sage: HLP = HallLittlewoodP(QQ) sage: HLQp = HallLittlewoodQp(QQ) sage: HLP([2,1]).scalar(HLQp([2,1])) 1 sage: HLP([2,1]).scalar(HLQp([1,1,1])) 0 sage: HLP([2,1]).scalar(HLQp([3])) 0 }}}