Computing modular cohomology rings of finite groups

Simon King Friedrich Schiller University Jena Joint work with David Green, Graham Ellis, Bettina Eick

July 24, 2019

Software, aim

SageMath package p_group_cohomology

Documentation:

http://users.minet.uni-jena.de/cohomology/documentation

• Results: http://users.minet.uni-jena.de/~king/cohomology

Software, aim

SageMath package p_group_cohomology

Documentation:

http://users.minet.uni-jena.de/cohomology/documentation

- Results: http://users.minet.uni-jena.de/~king/cohomology
- Installation:
 - v3.1: sage -i p_group_cohomology
 - v3.2: See https://trac.sagemath.org/ticket/28204

Software, aim

SageMath package p_group_cohomology

Documentation:

http://users.minet.uni-jena.de/cohomology/documentation

- Results: http://users.minet.uni-jena.de/~king/cohomology
- Installation:
 - v3.1: sage -i p_group_cohomology
 - v3.2: See https://trac.sagemath.org/ticket/28204

Aim

Computation of/with modular cohomology rings of finite groups, $H^*(G; \mathbb{F}_p)$, which includes some ring theoretic invariants, induced maps and detection of ring isomorphisms.

$H^*(G; \mathbb{F}_2)$ for all 267 groups of order 64 and all 2328 groups of order 128

$H^*(G; \mathbb{F}_2)$ for all 267 groups of order 64 and all 2328 groups of order 128

We need ~ 8 minutes for order 64

$H^*({\it G};\,\mathbb{F}_2)$ for all 267 groups of order 64 and all 2328 groups of order 128

We need \sim 8 minutes for order 64

(J. Carlson needed \sim 8 months comp. time [1997-2001])

$H^*({\it G};\,\mathbb{F}_2)$ for all 267 groups of order 64 and all 2328 groups of order 128

We need ~ 8 minutes for order 64

(J. Carlson needed \sim 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

$H^*({\it G};\,\mathbb{F}_2)$ for all 267 groups of order 64 and all 2328 groups of order 128

We need ~ 8 minutes for order 64

(J. Carlson needed \sim 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)

$H^*({\it G};\,\mathbb{F}_2)$ for all 267 groups of order 64 and all 2328 groups of order 128

We need ~ 8 minutes for order 64

(J. Carlson needed \sim 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)

• Co_3 : $H^*(Co_3; \mathbb{F}_2)$ is Cohen-Macaulay (was conjectured by Benson).

$H^*({\it G};\,\mathbb{F}_2)$ for all 267 groups of order 64 and all 2328 groups of order 128

We need ~ 8 minutes for order 64

(J. Carlson needed \sim 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)

- Co_3 : $H^*(Co_3; \mathbb{F}_2)$ is Cohen-Macaulay (was conjectured by Benson).
- HS, Janko groups (not J_4), Mathieu groups (not M_{24})
- McL: Correcting result of Adem-Milgram

$H^*({\it G};\,\mathbb{F}_2)$ for all 267 groups of order 64 and all 2328 groups of order 128

We need ~ 8 minutes for order 64

(J. Carlson needed \sim 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)

- Co_3 : $H^*(Co_3; \mathbb{F}_2)$ is Cohen-Macaulay (was conjectured by Benson).
- HS, Janko groups (not J_4), Mathieu groups (not M_{24})
- McL: Correcting result of Adem-Milgram
- Sz(8): minimal presentation of H^{*}(Sz(8); 𝔽₂) has 102 generators of maximal degree 29 and 4790 relations of maximal degree 58.

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:

• Given $n \in \mathbb{N}$, compute $H^d(G)$ for all $d \leq n$.

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:

- Given $n \in \mathbb{N}$, compute $H^d(G)$ for all $d \leq n$.
- **2** Generators/relations \rightsquigarrow Ring approximation $\tau_n H^*(G)$

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:

- Given $n \in \mathbb{N}$, compute $H^d(G)$ for all $d \leq n$.
- **2** Generators/relations \rightsquigarrow Ring approximation $\tau_n H^*(G)$
- **③** Test if $H^*(G) \cong \tau_n H^*(G)$: Completeness criteria

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:

- **Q** Given $n \in \mathbb{N}$, compute $H^d(G)$ for all $d \leq n$.
- **2** Generators/relations \rightsquigarrow Ring approximation $\tau_n H^*(G)$
- **3** Test if $H^*(G) \cong \tau_n H^*(G)$: Completeness criteria

Tools we use in SageMath to solve the tasks

 D. Green [2001]: "Heady standard bases" (min. proj. resolution of the modular group algebras of prime power groups)

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:

- Given $n \in \mathbb{N}$, compute $H^d(G)$ for all $d \leq n$.
- **2** Generators/relations \rightsquigarrow Ring approximation $\tau_n H^*(G)$
- Test if $H^*(G) \cong \tau_n H^*(G)$: Completeness criteria

Tools we use in SageMath to solve the tasks

- D. Green [2001]: "Heady standard bases" (min. proj. resolution of the modular group algebras of prime power groups)
 - Cartan-Eilenberg [1956]: "Stable element method" (otherwise)

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:

- Given $n \in \mathbb{N}$, compute $H^d(G)$ for all $d \leq n$.
- **2** Generators/relations \rightsquigarrow Ring approximation $\tau_n H^*(G)$
- Test if $H^*(G) \cong \tau_n H^*(G)$: Completeness criteria

Tools we use in SageMath to solve the tasks

- D. Green [2001]: "Heady standard bases" (min. proj. resolution of the modular group algebras of prime power groups)
 - Cartan-Eilenberg [1956]: "Stable element method" (otherwise)
 - SK [2014]: Non-commutative F_5 algorithm hopefully in future

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:

- **Q** Given $n \in \mathbb{N}$, compute $H^d(G)$ for all $d \leq n$.
- **2** Generators/relations \rightsquigarrow Ring approximation $\tau_n H^*(G)$
- **③** Test if $H^*(G) \cong \tau_n H^*(G)$: Completeness criteria

Tools we use in SageMath to solve the tasks

- D. Green [2001]: "Heady standard bases" (min. proj. resolution of the modular group algebras of prime power groups)
 - Cartan-Eilenberg [1956]: "Stable element method" (otherwise)
 - SK [2014]: Non-commutative F_5 algorithm hopefully in future
- ② Use Cython code, and let Singular compute Gröbner bases.

Ω

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:

- Given $n \in \mathbb{N}$, compute $H^d(G)$ for all $d \leq n$.
- **2** Generators/relations \rightsquigarrow Ring approximation $\tau_n H^*(G)$
- **③** Test if $H^*(G) \cong \tau_n H^*(G)$: Completeness criteria

Tools we use in SageMath to solve the tasks

- D. Green [2001]: "Heady standard bases" (min. proj. resolution of the modular group algebras of prime power groups)
 - Cartan-Eilenberg [1956]: "Stable element method" (otherwise)
 - SK [2014]: Non-commutative F_5 algorithm hopefully in future
- ② Use Cython code, and let Singular compute Gröbner bases.
 - D. Benson [2004], D. Green and SK [2011], for prime power groups
 - SK [2013], for non-prime-power groups
 - P. Symonds [2010], for all groups

Ω

(3)

For G not a prime power group and $S \in Syl_p(G)$:

• If
$$S \leq U \leq G$$
, then $\operatorname{res}_U^G : H^*(G) \hookrightarrow H^*(U)$,

For G not a prime power group and $S \in Syl_p(G)$:

If S ≤ U ≤ G, then res^G_U : H^{*}(G) → H^{*}(U), determined by stability conditions associated with representatives of U \ G/U.

For G not a prime power group and $S \in Syl_p(G)$:

- If S ≤ U ≤ G, then res^G_U : H^{*}(G) → H^{*}(U), determined by stability conditions associated with representatives of U \ G/U.
- Holt [1985] suggests to use a tower $S = U_0 \le U_1 \le ... \le U_k = G$. Our default: $S \le N_G(Z(S)) \le G$.

For G not a prime power group and $S \in Syl_p(G)$:

- If S ≤ U ≤ G, then res^G_U : H^{*}(G) → H^{*}(U), determined by stability conditions associated with representatives of U \ G/U.
- Holt [1985] suggests to use a tower $S = U_0 \le U_1 \le ... \le U_k = G$. Our default: $S \le N_G(Z(S)) \le G$.

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

• For $G = Co_3$: |S| = 1024 and $|S \setminus G/S| = 484680$.

For G not a prime power group and $S \in Syl_p(G)$:

- If S ≤ U ≤ G, then res^G_U : H^{*}(G) → H^{*}(U), determined by stability conditions associated with representatives of U \ G/U.
- Holt [1985] suggests to use a tower $S = U_0 \le U_1 \le ... \le U_k = G$. Our default: $S \le N_G(Z(S)) \le G$.

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

• For $G = Co_3$: |S| = 1024 and $|S \setminus G/S| = 484\,680$.

•
$$S = U_0 \le U_1 = N_G(\underbrace{Z_2(S)}_{\cong C_4 \times C_2}) \le U_2 = N_G(C_4) \le U_3 = N_G(\underbrace{Z(S)}_{\cong C_2}) \le U_4 = G$$

For G not a prime power group and $S \in Syl_p(G)$:

- If S ≤ U ≤ G, then res^G_U : H^{*}(G) → H^{*}(U), determined by stability conditions associated with representatives of U \ G/U.
- Holt [1985] suggests to use a tower $S = U_0 \le U_1 \le ... \le U_k = G$. Our default: $S \le N_G(Z(S)) \le G$.

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

• For
$$G = Co_3$$
: $|S| = 1024$ and $|S \setminus G/S| = 484\,680$.

•
$$S = U_0 \le U_1 = N_G(\underbrace{Z_2(S)}_{\cong C_4 \times C_2}) \le U_2 = N_G(C_4) \le U_3 = N_G(\underbrace{Z(S)}_{\cong C_2}) \le U_4 = G$$

• $\frac{i | 1 2 3 4}{|U_{i-1} \setminus U_i/U_{i-1}| | 2 3 3 7}$
In total, only 11 non-trivial stability conditions remain.

Completeness criteria

General scheme

• Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.

Completeness criteria

General scheme

- Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.
- Perform tests on these elements. If they succeed:

General scheme

- Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.
- Perform tests on these elements. If they succeed:
- We are done if *n* is "large enough" wrt. sum of the parameter degrees.

General scheme

- Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.
- Perform tests on these elements. If they succeed:
- We are done if *n* is "large enough" wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

• Dickson invariants (maxdeg $\sim p^{\mathrm{rk}_p(G)}$ resp. $\sim p^{\mathrm{rk}_p(G)-\mathrm{rk}(Z(G))}$) yield elements in $\tau_n H^*(G)$.

General scheme

- Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.
- Perform tests on these elements. If they succeed:
- We are done if *n* is "large enough" wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ~ p^{rk_ρ(G)} resp. ~ p^{rk_ρ(G)-rk(Z(G))}) yield elements in τ_nH^{*}(G). Test if they form a "filter regular HSOP".

General scheme

- Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.
- Perform tests on these elements. If they succeed:
- We are done if *n* is "large enough" wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ~ p^{rk_p(G)} resp. ~ p^{rk_p(G)-rk(Z(G))}) yield elements in τ_nH*(G). Test if they form a "filter regular HSOP".
 Expl Syl₂(Co₃): Degrees 8, 12, 14, 15

General scheme

- Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.
- Perform tests on these elements. If they succeed:
- We are done if *n* is "large enough" wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ~ p^{rk_p(G)} resp. ~ p^{rk_p(G)-rk(Z(G))}) yield elements in τ_nH^{*}(G). Test if they form a "filter regular HSOP". Expl Syl₂(Co₃): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7

General scheme

- Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.
- Perform tests on these elements. If they succeed:
- We are done if *n* is "large enough" wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

- Dickson invariants (maxdeg ~ p^{rk_p(G)} resp. ~ p^{rk_p(G)-rk(Z(G))}) yield elements in τ_nH*(G). Test if they form a "filter regular HSOP". Expl Syl₂(Co₃): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
- Get smaller last parameter by enumeration $\rightsquigarrow 8, 4, 6, 2$

General scheme

- Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.
- Perform tests on these elements. If they succeed:
- We are done if *n* is "large enough" wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

- Dickson invariants (maxdeg ~ p^{rk_p(G)} resp. ~ p^{rk_p(G)-rk(Z(G))}) yield elements in τ_nH^{*}(G). Test if they form a "filter regular HSOP".
 Expl Syl₂(Co₃): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
- Get smaller last parameter by enumeration $\rightsquigarrow 8, 4, 6, 2$
- Show that ∃ finite field extension k/𝔽₂ so that H*(G; k) has f.r. HSOP in degrees 8,4,2,2.

General scheme

- Find elements of $\tau_n H^*(G)$ guaranteed to be parameters for $H^*(G)$.
- Perform tests on these elements. If they succeed:
- We are done if *n* is "large enough" wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

- Dickson invariants (maxdeg ~ p^{rk_ρ(G)} resp. ~ p^{rk_ρ(G)-rk(Z(G))}) yield elements in τ_nH*(G). Test if they form a "filter regular HSOP". Expl Syl₂(Co₃): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
- Get smaller last parameter by enumeration $\rightsquigarrow 8, 4, 6, 2$
- Show that \exists finite field extension k/\mathbb{F}_2 so that $H^*(G; k)$ has f.r. HSOP in degrees 8,4,2,2.

 Compute filter degree type using parameters of H^{*}(G; 𝔽₂) but work with parameter degrees of H^{*}(G; k).

Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of $\tau_n H^*(G)$ as a $\langle \langle X \rangle \rangle$ -module needs to be computed.

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of $\tau_n H^*(G)$ as a $\langle \langle X \rangle \rangle$ -module needs to be computed.
- Usually at least as good as the modified Benson test.

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of $\tau_n H^*(G)$ as a $\langle \langle X \rangle \rangle$ -module needs to be computed.
- Usually at least as good as the modified Benson test.

SK [2013], if |G| is not prime power, $S \le U \le G$

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of $\tau_n H^*(G)$ as a $\langle \langle X \rangle \rangle$ -module needs to be computed.
- Usually at least as good as the modified Benson test.

SK [2013], if |G| is not prime power, $S \le U \le G$

Bound for the generator degrees of H*(G) in terms of the generating degree of H*(U) as a τ_nH*(G)-module.

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of $\tau_n H^*(G)$ as a $\langle \langle X \rangle \rangle$ -module needs to be computed.
- Usually at least as good as the modified Benson test.

SK [2013], if |G| is not prime power, $S \le U \le G$

Bound for the generator degrees of H*(G) in terms of the generating degree of H*(U) as a τ_nH*(G)-module.
 Very useful: Stability conditions only in *lower* degrees. Expl: Sz(8)

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of $\tau_n H^*(G)$ as a $\langle \langle X \rangle \rangle$ -module needs to be computed.
- Usually at least as good as the modified Benson test.

SK [2013], if |G| is not prime power, $S \le U \le G$

Bound for the generator degrees of H*(G) in terms of the generating degree of H*(U) as a τ_nH*(G)-module.
 Very useful: Stability conditions only in *lower* degrees. Expl: Sz(8)

Ompleteness criterion in terms of

- parameter degrees for $H^*(G; k)$, k/\mathbb{F}_p ,
- depth $(H^*(U))$,
- Hilbert series of $\tau_n H^*(G)$.

Finitary algebras

Finding graded algebra isomorphisms

Eick, SK [2015]

We provide a complete classification of $H^*(G)$ up to isomorphisms of graded \mathbb{F}_p -algebras, for *p*-groups *G*, $|G| \leq 81$.

G	#groups	#rings	cum. #groups	cum. #rings
2	1	1	1	1
4	2	2	3	3
8	5	5	8	7
16	14	14	22	18
32	51	48	73	55
64	267	239	340	260
3	1	1	1	1
9	2	2	3	2
27	5	5	8	5
81	15	13	23	14

Very naive algorithm:

• Let
$$R_1 \cong \mathbb{F}_p[g_1, ..., g_n]/Q$$
.

Very naive algorithm:

- Let $R_1 \cong \mathbb{F}_p[g_1, ..., g_n]/Q$.
- For any $\{x_1, ..., x_n\}$ with $x_i \in R_2^{(|g_i|)}$ (i = 1, ..., n), we can test if $g_i \mapsto x_i$ extends to a graded isomorphism $R_1 \to R_2$.

Very naive algorithm:

- Let $R_1 \cong \mathbb{F}_p[g_1, ..., g_n]/Q$.
- For any $\{x_1, ..., x_n\}$ with $x_i \in R_2^{(|g_i|)}$ (i = 1, ..., n), we can test if $g_i \mapsto x_i$ extends to a graded isomorphism $R_1 \to R_2$.
- Only *finitely many choices* for {x₁,...,x_n}. Hence we can test in finite time whether or not R₁ ≅ R₂.

Very naive algorithm:

- Let $R_1 \cong \mathbb{F}_p[g_1, ..., g_n]/Q$.
- For any $\{x_1, ..., x_n\}$ with $x_i \in R_2^{(|g_i|)}$ (i = 1, ..., n), we can test if $g_i \mapsto x_i$ extends to a graded isomorphism $R_1 \to R_2$.
- Only *finitely many choices* for {x₁,..., x_n}. Hence we can test in finite time whether or not R₁ ≅ R₂.

If $g_i \mapsto x_i$ for all $i \in I \subset \{1, ..., n\}$ extends to an isomorphism, then...

Very naive algorithm:

- Let $R_1 \cong \mathbb{F}_p[g_1, ..., g_n]/Q$.
- For any $\{x_1, ..., x_n\}$ with $x_i \in R_2^{(|g_i|)}$ (i = 1, ..., n), we can test if $g_i \mapsto x_i$ extends to a graded isomorphism $R_1 \to R_2$.
- Only *finitely many choices* for {x₁,...,x_n}. Hence we can test in finite time whether or not R₁ ≅ R₂.

If $g_i \mapsto x_i$ for all $i \in I \subset \{1, ..., n\}$ extends to an isomorphism, then...

 $\textbf{9} \text{ equal Hilbert series of } G_I := \langle g_i | i \in I \rangle \lhd R_1, \ X_I := \langle x_i | i \in I \rangle \lhd R_2.$

Very naive algorithm:

- Let $R_1 \cong \mathbb{F}_p[g_1, ..., g_n]/Q$.
- For any $\{x_1, ..., x_n\}$ with $x_i \in R_2^{(|g_i|)}$ (i = 1, ..., n), we can test if $g_i \mapsto x_i$ extends to a graded isomorphism $R_1 \to R_2$.
- Only *finitely many choices* for {x₁,..., x_n}. Hence we can test in finite time whether or not R₁ ≅ R₂.

If $g_i \mapsto x_i$ for all $i \in I \subset \{1, ..., n\}$ extends to an isomorphism, then...

- $\textbf{ 9 equal Hilbert series of } G_I := \langle g_i | i \in I \rangle \lhd R_1, \ X_I := \langle x_i | i \in I \rangle \lhd R_2.$
- 3 substituting x_i for g_i in $Q \cap \langle \langle g_i | i \in I \rangle \rangle \subset \mathbb{F}_p[g_1, ..., g_n]$ yields zero.

Very naive algorithm:

- Let $R_1 \cong \mathbb{F}_p[g_1, ..., g_n]/Q$.
- For any $\{x_1, ..., x_n\}$ with $x_i \in R_2^{(|g_i|)}$ (i = 1, ..., n), we can test if $g_i \mapsto x_i$ extends to a graded isomorphism $R_1 \to R_2$.
- Only *finitely many choices* for {x₁,..., x_n}. Hence we can test in finite time whether or not R₁ ≅ R₂.

If $g_i \mapsto x_i$ for all $i \in I \subset \{1, ..., n\}$ extends to an isomorphism, then...

- $\textbf{9} \text{ equal Hilbert series of } G_I := \langle g_i | i \in I \rangle \lhd R_1, \ X_I := \langle x_i | i \in I \rangle \lhd R_2.$
- 3 substituting x_i for g_i in $Q \cap \langle \langle g_i | i \in I \rangle \rangle \subset \mathbb{F}_p[g_1, ..., g_n]$ yields zero.
- So $Ann(G_I)$, $Ann(X_I)$ resp. $\sqrt{G_I}$, $\sqrt{X_I}$ have the same Hilbert series.

Very naive algorithm:

- Let $R_1 \cong \mathbb{F}_p[g_1, ..., g_n]/Q$.
- For any $\{x_1, ..., x_n\}$ with $x_i \in R_2^{(|g_i|)}$ (i = 1, ..., n), we can test if $g_i \mapsto x_i$ extends to a graded isomorphism $R_1 \to R_2$.
- Only *finitely many choices* for {x₁,...,x_n}. Hence we can test in finite time whether or not R₁ ≅ R₂.

If $g_i \mapsto x_i$ for all $i \in I \subset \{1, ..., n\}$ extends to an isomorphism, then...

- $\textbf{9} \text{ equal Hilbert series of } G_I := \langle g_i | i \in I \rangle \lhd R_1, \ X_I := \langle x_i | i \in I \rangle \lhd R_2.$
- 3 substituting x_i for g_i in $Q \cap \langle \langle g_i | i \in I \rangle \rangle \subset \mathbb{F}_p[g_1, ..., g_n]$ yields zero.
- So $Ann(G_I)$, $Ann(X_I)$ resp. $\sqrt{G_I}$, $\sqrt{X_I}$ have the same Hilbert series.

When we successively increase I, the number of possible mappings of G_I satisfying above criteria often remains fairly small!

Setting

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; e.g., \mathcal{A} basic algebra.
- $\langle g_1, ..., g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module; *e.g.*, M Syzygy module.

Setting

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; e.g., \mathcal{A} basic algebra.
- $\langle g_1, ..., g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module; *e.g.*, M Syzygy module.
- Aim: Compute minimal generating set for *M*.

Setting

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; e.g., \mathcal{A} basic algebra.
- $\langle g_1, ..., g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module; *e.g.*, M Syzygy module.
- Aim: Compute minimal generating set for M.

"Heady" standard bases [Green 2001]: Similar to Buchberger's algorithm

• Monomial ordering on $\mathcal{P} \rightsquigarrow$ "leading monomials" in \mathcal{P} , \mathcal{A} , M.

Setting

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; e.g., \mathcal{A} basic algebra.
- $\langle g_1, ..., g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module; *e.g.*, M Syzygy module.
- Aim: Compute minimal generating set for M.

- Monomial ordering on $\mathcal{P} \rightsquigarrow$ "leading monomials" in \mathcal{P} , \mathcal{A} , M.
- For $f \in \mathcal{A}^r$, $G \subset M$: NF $(f; G) \in \mathcal{A}^r$ (termination?).

Setting

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; e.g., \mathcal{A} basic algebra.
- $\langle g_1, ..., g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module; *e.g.*, M Syzygy module.
- Aim: Compute minimal generating set for M.

- Monomial ordering on $\mathcal{P} \rightsquigarrow$ "leading monomials" in \mathcal{P} , \mathcal{A} , M.
- For $f \in \mathcal{A}^r$, $G \subset M$: NF $(f; G) \in \mathcal{A}^r$ (termination?).
- "S-polynomials" $\rightsquigarrow G'$ so that $NF(f; G') = 0 \iff f \in M$.
- By construction, S-polynomials belong to Rad(M).

Setting

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; e.g., \mathcal{A} basic algebra.
- $\langle g_1, ..., g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module; *e.g.*, M Syzygy module.
- Aim: Compute minimal generating set for M.

- Monomial ordering on $\mathcal{P} \rightsquigarrow$ "leading monomials" in \mathcal{P} , \mathcal{A} , M.
- For $f \in \mathcal{A}^r$, $G \subset M$: NF $(f; G) \in \mathcal{A}^r$ (termination?).
- "S-polynomials" $\rightsquigarrow G'$ so that $NF(f; G') = 0 \iff f \in M$.
- By construction, S-polynomials belong to Rad(M).
- $NF_h(f; G)$: Only consider radicality preserving reductions.

Setting

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; e.g., \mathcal{A} basic algebra.
- $\langle g_1,...,g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module; *e.g.*, M Syzygy module.
- Aim: Compute minimal generating set for M.

- Monomial ordering on $\mathcal{P} \rightsquigarrow$ "leading monomials" in \mathcal{P} , \mathcal{A} , M.
- For $f \in \mathcal{A}^r$, $G \subset M$: NF $(f; G) \in \mathcal{A}^r$ (termination?).
- "S-polynomials" $\rightsquigarrow G'$ so that $NF(f; G') = 0 \iff f \in M$.
- By construction, S-polynomials belong to Rad(M).
- $NF_h(f; G)$: Only consider radicality preserving reductions.
- Thm: If a negative degree ordering is used, the non-radical elements of a heady standard basis form a minimal generating set of *M*.

Evaluation $\operatorname{ev} : \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P} \twoheadrightarrow M$, $\operatorname{ev}(\mathfrak{e}_{i}) = g_{i}$ • If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $\operatorname{ev}(\tilde{f}) = f \in M$: $\operatorname{Lt}(\tilde{f})$ is an F_{5} signature of f.

Evaluation ev : $\bigoplus_{i=1}^{k} \mathfrak{e}_i \mathcal{P} \twoheadrightarrow M$, ev $(\mathfrak{e}_i) = g_i$

- If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $ev(\tilde{f}) = f \in M$: $Lt(\tilde{f})$ is an F_{5} signature of f.
- Let $NF_{\sigma}(f; G)$ be obtained from signature preserving reductions.

Evaluation ev : $\bigoplus_{i=1}^{k} \mathfrak{e}_i \mathcal{P} \twoheadrightarrow M$, ev $(\mathfrak{e}_i) = g_i$

- If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $ev(\tilde{f}) = f \in M$: $Lt(\tilde{f})$ is an F_{5} signature of f.
- Let $NF_{\sigma}(f; G)$ be obtained from signature preserving reductions.
- Disregard all S-polynomials with a signature in lead(ker(ev)).

Evaluation ev :
$$\bigoplus_{i=1}^k \mathfrak{e}_i \mathcal{P} \twoheadrightarrow M$$
, ev $(\mathfrak{e}_i) = g_i$

- If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $ev(\tilde{f}) = f \in M$: $Lt(\tilde{f})$ is an F_{5} signature of f.
- Let $NF_{\sigma}(f; G)$ be obtained from signature preserving reductions.
- Disregard all S-polynomials with a signature in lead(ker(ev)).
 - Quotient relations of A play the role of trivial Syzygies that are used for the classical commutative F_5 .

Evaluation ev :
$$\bigoplus_{i=1}^k \mathfrak{e}_i \mathcal{P} \twoheadrightarrow M$$
, ev $(\mathfrak{e}_i) = g_i$

- If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $ev(\tilde{f}) = f \in M$: $Lt(\tilde{f})$ is an F_{5} signature of f.
- Let $NF_{\sigma}(f; G)$ be obtained from signature preserving reductions.
- Disregard all S-polynomials with a signature in lead(ker(ev)).
 - Quotient relations of A play the role of trivial Syzygies that are used for the classical commutative F_5 .
 - Any remaining zero reduction yield non-trivial Syzygies, wich allows to avoid useless S-polynomials later.

Evaluation ev :
$$\bigoplus_{i=1}^k \mathfrak{e}_i \mathcal{P} \twoheadrightarrow M$$
, ev $(\mathfrak{e}_i) = g_i$

- If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $ev(\tilde{f}) = f \in M$: $Lt(\tilde{f})$ is an F_{5} signature of f.
- Let $NF_{\sigma}(f; G)$ be obtained from signature preserving reductions.
- Disregard all S-polynomials with a signature in lead(ker(ev)).
 - Quotient relations of A play the role of trivial Syzygies that are used for the classical commutative F_5 .
 - Any remaining zero reduction yield non-trivial Syzygies, wich allows to avoid useless S-polynomials later.

Why we want to use F_5 in future

- Thm: If a negative degree ordering is used, a *signed standard basis* allows to read off bases for Radⁱ(M).
- Green's heady algorithm uses only partial information of the *F*₅-signature that allows to find minimal generating sets but won't avoid useless critical pairs.