Dynamical Systems in Sage

Benjamin Hutz

Department of Mathematics and Statistics Saint Louis University

> November 17, 2019 Sage-days 104

This workshop is supported by NSF grant DMS-1906266

A Quick Review of Dynamical Systems

Definition

Given a set A and a map $f: A \to A$ we can iterate the map f on the set A to create a dynamical system. We denote the n-th iterate of f as

$$f^n = f \circ f^{n-1}.$$

Definition

- We say a point x is periodic if there exists an $n \in \mathbb{N}$ such that $f^n(x) = x$.
- **2** We say a point x is preperiodic if there exists an $m \in \mathbb{N}$ such that $f^m(x)$ is periodic.

Examples

Example (Newton's Method)

The classic example of a dynamical system is Newton's Method for a differentiable rational function *F*. We define

$$f(x) = x - \frac{F(x)}{F'(x)}.$$

Then the fixed points of f are the zeros of F.

Example (EC Point Doubling)

Examples: Periodic Points

Example

Consider $A = \mathbb{Q}$

Dynamical Systems and Sage

Sage-dynamics project

- Started at ICERM in 2012
- Sage-days 55 in 2013
- **3** NSF grant DMS-1415294, 2014-2017 (PI: Hutz)
- IMA coding sprints 2017
- **ICERM REU 2019**

Resources

- Project Page: http://wiki.sagemath.org/dynamics/ ArithmeticAndComplex
- Reference card: (https://wiki.sagemath.org/quickref/)
- Google group: sage-dynamics

Where is the code?

- Sage has a schemes framework: Affine, Projective, Toric, etc.
- Sage has a homomorphism framework that specifies maps between objects (homset)
- Sage has a DynamicalSystem object (hom with domain and range the same)

Functionality Overview

- **1** Points and functions $(\mathbb{A}^n, \mathbb{P}^n, \mathbb{P}^n \times \mathbb{P}^m)$
- 2 Iteration, orbits, and preimages
- Heights, local heights, and canonical heights
- Periodic points and dynatomic polynomials
- Critical points, critical height, and post-critically finite maps
- Onjugation, invariants, and minimal models
- Automorphism groups and conjugating sets
- Rational maps, indeterminacy, dynamical degrees

Basic Examples: Iteration

```
1 sage: A.\langle x \rangle = AffineSpace(QQ, 1)
2 sage: f = DynamicalSystem affine([x^2-1])
3 sage: P = A(2)
4 sage: f(P), f(f(P)), f(f(f(P))), f.nth iterate(P, 4)
5 ((3), (8), (63), (3968))
6 sage: f.orbit(P,[0,3])
7 [(2), (3), (8), (63)]
8 sage: f.nth iterate map(2)
9 Dynamical System of Affine Space of dimension 1 over
      Rational Field
10 Defn: Defined on coordinates by sending (x) to
           (x^4 - 2 * x^2)
11
```

Basic Examples: Varieties

```
1 sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
2 sage: f = DynamicalSystem([(x-2*y)^2,(x-2*z)^2,x^2])
3 sage: X = P.subscheme(y-z)
4 sage: for Y in f.orbit(X,3):
5 sage: Y.defining_polynomials()
6 (y - z,), (x - y,), (x - z,), (y - z,)
```

Height definitions

Given a point $P = (P_0 : \cdots : P_N)$

The (absolute) global height is defined as

$$h(P) = \frac{1}{[K:\mathbb{Q}]} \log(\prod_{v} \max_{i} (|P_{i}|_{v}))$$

The local height at a place v is defined as

$$\lambda_{v}(P) = \log(\max(|P_{i}|_{v}, 1))$$

• The canonical height with respect to a morphism f is defined as

$$\hat{h}(P) = \lim_{n \to \infty} \frac{h(f^n(P))}{\deg(f)^n}.$$

• The local canonical height (Green's function) at a place v.

Basic Examples: Heights

```
1 sage: P.<x,y> = ProjectiveSpace(QQ, 1)
2 sage: f = DynamicalSystem([4*x^2-3*y^2, 4*y^2])
3 sage: Q = P(3,5)
4 sage: Q.local_height(2), Q.local_height(5)
5 (0.000000000000000, 1.60943791243410)
6 sage: Q.global_height()
7 1.60943791243410
8 sage: f.canonical_height(Q, error_bound=0.001)
9 2.3030927691516823627114122790
10 sage: sum([f.green_function(Q,t) for t in [0,2,5]])
11 2.3025850929940456840179914547
```

Application of Heights to Preperiodic points

Theorem

Let $f: \mathbb{P}^N \to \mathbb{P}^N$ be a morphism of degree $d \geq 2$ defined over a number field.

- $\hat{\mathbf{h}}_f(Q) = 0$ if and only if Q is preperiodic
- 2 There exists a constant C₁ depending only on f such that

$$|h(f(Q))-dh(Q)|\leq C_1.$$

1 There exists a constant C_2 depending only on f such that

$$\left|h(Q)-\hat{h}_f(Q)\right|\leq C_2.$$

Application of Heights to Preperiodic points

Combining these we get a test for preperiodic points

Preperiodic point check

- If $\hat{h}(P) > C_2$, then not preperiodic.
- 2 Compute forward images
 - 1 If we encounter a cycle, return preperiodic
 - 2 If the height becomes $> C_2$, return not preperiodic.

```
1 sage: P.<x,y> = ProjectiveSpace(QQ, 1)
2 sage: f = DynamicalSystem([4*x^2-3*y^2, 4*y^2])
3 sage: Q = P(3,2)
4 sage: Q.is_preperiodic(f, return_period=True)
5 (0,1)
```

All preperiodic points from heights

Algorithm

- Find the height difference bound via Nullstellensatz
- Check all rational point up to bound for preperiodic

```
1 sage: %time
2 sage: B = f.height difference bound();print B
3 sage: L = []
4 sage: for Q in P.points_of_bounded_height (bound=exp(B)
      ):
5 sage: if Q.is_preperiodic(f):
6 sage:
               L.append(Q)
7 sage: L
8 2.48490664978800
9 (1/2 : 1), (-1/2 : 1), (3/2 : 1), (-3/2 : 1), (1 : 0)
10 CPU time: 2.58 s, Wall time: 2.70 s
```

Solving the equations

The periodic points of specified period form a zero-dimensional scheme.

Definitions: Dynatomic Polynomial

Let $f \in K[z]$ be a single variable polynomial.

Definition

The *n*-th dynatomic polynomial for *f* is defined as

$$\Phi_n^*(f) = \prod_{d|n} (f^d(z) - z)^{\mu(n/d)},$$

where μ is the Moebius function.

Definition

We can also define a generalized dynatomic polynomial for preperiodic points as

$$\Phi_{m,n}^*(f) = \frac{\Phi_n^*(f^m)}{\Phi_n^*(f^{m-1})}.$$

More general definitions can be made using intersection theory.

Basic Example: Dynatomic Polynomial

We can find preperiodic points by finding the roots of the dynatomic polynomials.

```
1 sage: P.<x,y> = ProjectiveSpace(QQ,1)
2 sage: f = DynamicalSystem([4*x^2-3*y^2, 4*y^2])
3 sage: f.dynatomic_polynomial(1).factor()
4 y * (2*x - 3*y) * (2*x + y)
5 sage: f.dynatomic_polynomial(2).factor()
6 (4) * (2*x + y)^2
7 sage: f.dynatomic_polynomial([1,1]).factor()
8 (16) * y * (2*x - y) * (2*x + 3*y)
```

Definitions

Theorem (Northcott)

The set of rational preperiodic points for a morphism $f: \mathbb{P}^N \to \mathbb{P}^N$ is a set of bounded height.

Conjecture (Morton-Silverman)

Given a morphism $f: \mathbb{P}^N \to \mathbb{P}^N$ of degree d, defined over a number field of degree D, then there exists a constant C(d, D, N) such that

$$\#\operatorname{PrePer}(f) \leq C(d, D, N).$$

Reducing mod ρ

Definition

Let $f(x) = \frac{p(x)}{q(x)}$ for polynomials p, q. Define the resultant as

$$Res(f) = Res(p(x), q(x)).$$

Proposition

Let $f(x) = \frac{p(x)}{q(x)}$. The following are equivalent:

- 2 p(x) and q(x) have no common zeros modulo p,

Reducing mod ρ

Definition

Let f(x) be a rational function. We say that a prime p is a prime of good reduction if any condition of the Proposition is satisfied. Otherwise we say p is a prime of bad reduction.

For a prime of good reduction iteration commutes with reduction mod p:

$$\overline{f^n(x)} \equiv \overline{f}^n(\overline{x}).$$

Multiplier

Definition

Let f(x) be a rational function and z a periodic point of minimal period n. Then, the multiplier of z is

$$\lambda_z = (f^n)'(z).$$

Example

For $f(x) = x^2 - 2$, we have z = 2 is a fixed point with multiplier 4.

A precise description of n

Theorem (Morton-Silverman 1994, Zieve)

Let $f: \mathbb{P}^1 \to \mathbb{P}^1$ defined over \mathbb{Q} with $\deg(f) \geq 2$. Assume that f has good reduction at p with a rational periodic point P. Define

n = minimal period of P.

m = minimal period of P modulo p.

 $r = the multiplicative order of (f^m)'(P) \mod p$

Then

$$n = m$$
 or $n = mrp^e$

for some explicitly bounded integer $e \ge 0$.

See [Hut09] for higher dimensions.

Algorithm for finding all rational preperiodic points [Hut15]

- For each prime p in PrimeSet with good reduction find the list of possible global periods:
 - Find all of the periodic cycles modulo p
 - 2 Compute m, mrp^e for each cycle.
- Intersect the lists of possible periods for all primes in PrimeSet.
- For each n in Possible Periods
 - Find all rational solutions to $f^n(x) = x$.
- Let PrePeriodicPoints = PeriodicPoints.
- Repeat until PrePeriodicPoints is constant
 - Add the first rational preimage of each point in PrePeriodicPoints to PrePeriodicPoints.

Use Weil restriction of scalars for number fields (polynomials in dimension 1).

Examples

```
1 sage: P.<x,y> = ProjectiveSpace(QQ,1)
2 sage: f = DynamicalSystem([x^2-29/16*y^2,y^2])
3 sage: f.rational_preperiodic_graph()
4 Looped digraph on 9 vertices
```

```
1 sage: R.<t> = PolynomialRing(QQ)
2 sage: K.<v> = NumberField(t^3 + 16*t^2 - 10496*t + 94208)
3 sage: PS.<x,y> = ProjectiveSpace(K,1)
4 sage: f = DynamicalSystem([x^2-29/16*y^2,y^2]) #Hutz
5 sage: f.rational_preperiodic_graph().show() #10s
```

Examples

```
1 sage: K.<w> = QuadraticField(33)
2 sage: PS.<x,y> = ProjectiveSpace(K,1)
3 sage: f = DynamicalSystem([x^2-71/48*y^2,y^2]) #Stoll
4 sage: len(f.rational_preperiodic_points())
5 13
```

Definitions

Definition

We say that P is a critical point for f if the jacobian of f does not have maximal rank at P.

Definition

We say that $f: \mathbb{P}^1 \to \mathbb{P}^1$ is post-critically finite if all of the critical points are preperiodic.

Definition

The critical height of f is defined as

$$\sum_{c \in \mathit{crit}} \hat{h}(c).$$

Algorithm: is_postcritically_finite()

- **①** Compute the critical points of f over $\overline{\mathbb{Q}}$
- 2 Determine if each is preperiodic.

```
1 sage: P.<x,y> = ProjectiveSpace(QQ,1)
2 sage: f = DynamicalSystem([x^2 + 12*y^2, 7*x*y])
3 sage: f.critical_points(R=QQbar)
4 [(-3.464101615137755?: 1), (3.464101615137755?: 1)]
5 sage: f.is_postcritically_finite()
6 False
7 sage: f.critical_height(error_bound=0.001)
8 2.8717614996729500069637701410
```

Example: Lattès maps

```
1 sage: P.\langle x,y \rangle = ProjectiveSpace(QQ,1)
2 sage: E = EllipticCurve([0,0,0,0,2]);E
3 Elliptic Curve defined by y^2 = x^3 + 2 over Rational
      Field
4 sage: f = P.Lattes_map(E, 2)
  sage: f.is_postcritically_finite()
  True
  sage: f.critical point portrait()
  Looped digraph on 10 vertices
9 sage: f.critical height (error bound=0.001)
10 8.2900752025070323779826707582e-17
```

Conjugation

Definition

Given a map $f: \mathbb{P}^1 \to \mathbb{P}^1$ we can conjugate by an element $\alpha \in \mathsf{PGL}_2$

$$f^{\alpha} = \alpha \circ f \circ \alpha^{-1}$$
.

This preserves the dynamical properties of *f*.

Example

Every degree 2 polynomial is conjugate to a polynomial of the form

$$f_c(z)=z^2+c$$

Example

Consider
$$f(z) = z^2 - 2z + 1$$
. Let $\alpha = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in PGL_2$ then $\alpha : z \mapsto z + 1$.

$$f^{\alpha}(z) = \alpha^{-1}(f(\alpha(z))) = f(\alpha(z)) + 1$$

= $f(z+1) - 1 = z^2 - 1$.

Sage Example

```
1 sage: P.<x,y> = ProjectiveSpace(QQbar,1)
2 sage: f = DynamicalSystem([x^2 -y^2,y^2])
3 sage: g = DynamicalSystem([x^2 - 2*x*y + y^2,y^2])
4 sage: f.is_conjugate(g)
5 True
6 sage: f.conjugating_set(g)
7 [[ 1 -1]
8 [ 0 1]]
```

Polynomial Forms

Definition

A polynomial map on \mathbb{P}^1 is a map with a totally ramified fixed point. A polynomial is in monic centered form if it is of the form

$$x^d + a_{d-2}x^{d-2} + \cdots + a_1x + a_0.$$

```
1 sage: P.<x,y> = ProjectiveSpace(QQ, 1)
2 sage: f = DynamicalSystem([4*x^3 + 7*x^2*y + 5*x*y^2 + y^3, -3*x^3 - 4*x^2*y - 2*x*y^2])
3 sage: f.is_polynomial()
4 True
5 sage: f.normal_form()
6 Scheme endomorphism of Projective Space of dimension 1 over Rational Field
7 Defn: Defined on coordinates by sending (x : y) to (x^3 + 2*x*y^2 + y^3 : y^3)
```

Moduli Space

Definition

We define Hom_d to be the space of degree d morphisms on \mathbb{P}^1 .

This conjugation action gives rise to a moduli space

$$M_d = \operatorname{\mathsf{Hom}}_d / \operatorname{\mathsf{PGL}}_2$$
.

It is known that

- The quotient is a geometric quotient, Petsche-Szpiro-Tepper (2009)
- \odot M_d is a rational variety for all d, Levy (2011)

Invariant Functions

Theorem (Milnor (\mathbb{C}), Silverman (\mathbb{Z}))

There are two PGL₂ invariant functions σ_1, σ_2 such that

$$(\sigma_1,\sigma_2):M_2\cong \mathbb{A}_2.$$

Theorem (Milnor (\mathbb{C}), Silverman (\mathbb{Z}))

Every invariant function of M_2 is a polynomial in $\mathbb{Z}[\sigma_1, \sigma_2]$.

Multiplier Spectra, Sigma invariants

Definition

Given a point z of period n for $f: \mathbb{P}^1 \to \mathbb{P}^1$ we define the multiplier at z to be

$$\lambda_z = (f^n)'(z)$$

Definition

We define the *n*-th multiplier spectrum of f, Λ_n , to be the set of multipliers of n periodic points (with multiplicity)

$$\Lambda_n(f) = \{\lambda_z : z \in \mathsf{Per}_n(f)\}$$

Definition

We define $\sigma_{n,i}$ to be the *i*-th symmetric function on Λ_n . We denote $\sigma_n = (\sigma_{n,1}, \dots, \sigma_{n,d^n+1})$.

Quadratic Polynomials

Recall that every quadratic polynomial is conjugate to exactly one polynomial of the form $f_c(z) = z^2 + c$. We can compute

$$\begin{aligned} \mathsf{Per}_1(f) &= \left\{ \frac{1 \pm \sqrt{1 - 4c}}{2}, \infty \right\} \\ \Lambda_1(f) &= \{ 1 \pm \sqrt{1 - 4c}, 0 \} \\ \sigma_1(f) &= \{ 2, 4c, 0 \} \end{aligned}$$

In particular, the family of quadratic polynomials represents the line $\sigma_1 = 2$ in M_2 .

```
1 sage: R.<c> = QQ[]
2 sage: P.<x,y> = ProjectiveSpace(R,1)
3 sage: f = DynamicalSystem([x^2+c*y^2,y^2])
4 sage: f.sigma_invariants(1)
5 [2, 4*c, 0]
```

We say a representation f of $[f] \in M_d$ is minimal if

$$Res(f) \leq Res(f^{\alpha})$$
 for all $\alpha \in PGL_2$.

Bruin-Molnar algorithm [BM12]

Reduced Model

Having found the minimal resultant, we can now conjugate by any element of $SL_2(\mathbb{Z})$ without changing the resultant. We would like the model with smallest coefficients.

Apply Cremona-Stoll [CS03] to the fixed point binary form. This gives *almost* the minimal model

```
1 sage: PS.<x,y> = ProjectiveSpace(QQ, 1)
2 sage: f = DynamicalSystem([x^3 + x*y^2, y^3])
3 sage: m = matrix(QQ, 2, 2, [-221, -1, 1, 0])
4 sage: f = f.conjugate(m);f
5 ...Defn: Defined on coordinates by sending (x : y) to
6 (x^3 : 10793861*x^3 + 146524*x^2*y + 663*x*y^2 + y^3)
7 sage: f.reduced_form()[0]
8 ...Defn: Defined on coordinates by sending (x : y) to
9 (x^3 + x*y^2 : y^3)
```

Automorphism groups

Definition

The automorphism group of *f* is the group

$$\operatorname{Aut}(f) = \{ \alpha \in \operatorname{PGL}_{N+1} : f^{\alpha} = f \}.$$

Determining Automorphism Groups [FMV14]

```
1 sage: R.<x,y> = ProjectiveSpace(QQ,1)
2 sage: f = DynamicalSystem([x^2-2*x*y-2*y^2,-2*x^2-2*x*y+y^2])
3 sage: f.automorphism_group(return_functions=True)
4 [x, 2/(2*x), -x - 1, -2*x/(2*x + 2), (-x - 1)/x, -1/(x + 1)]
5 sage: f.conjugate(matrix([[-1,-1],[1,0]])) == f
6 True
```

Indeterminacy

Definition

For maps $f = (f_0, \dots, f_n) : \mathbb{P}^n \to \mathbb{P}^n$ a point of indeterminacy is where

$$f_i(P) = 0 \quad \forall i.$$

Definition

Define the dynamical degree of f to be

$$\lim_{n\to\infty}\deg(f^n)^{1/n}.$$

```
1 sage: P2.<x,y,z> = ProjectiveSpace(QQ, 2)
2 sage: f = DynamicalSystem([x*y, y*z, z^2])
3 sage: f.indeterminacy_points()
4 [(0 : 1 : 0), (1 : 0 : 0)]
5 sage: f.dynamical_degree(N=50)
6 1.08181102597739
7 sage: ``degrees of iterates''
8 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 ,
```

References

- Nils Bruin and Alexander Molnar, *Minimal models for rational functions in a dynamical setting*, LMS J. Comput. Math **15** (2012), 400–417.
- John Cremona and Michael Stoll, *On the reduction theory of binary forms*, J. Reine Angew. Math. **565** (2003), 79–99.
- Xander Faber, Michelle Manes, and Bianca Viray, *Computing conjugating sets and automorphism groups of rational functions*, Journal of Algebra **423** (2014), 1161–1190.
- Benjamin Hutz, *Good reduction of periodic points*, Illinois J. Math. **53** (2009), no. 4, 1109–1126.
- _____, Determination of all rational preperiodic points for morphisms of PN, Mathematics of Computation 84 (2015), no. 291, 289–308.