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A Quick Review of Dynamical Systems

Definition
Given aset Aand amap f: A — A we can iterate the map f on the set
Ato create a dynamical system. We denote the n-th iterate of f as
f1=fof " )
Definition
@ We say a point x is periodic if there exists an n € N such that
f1(x) = x.
© We say a point x is preperiodic if there exists an m € N such that
fM(x) is periodic.
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Example (Newton’s Method)

The classic example of a dynamical system is Newton’s Method for a
differentiable rational function F. We define

F(x)

f(x)=x— Fx)’

Then the fixed points of f are the zeros of F.

Example (EC Point Doubling)
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Examples: Periodic Points

Example
Consider A=Q
@ i=r-8 : §o-3-[i--F-F4

]

\
v
\@i’f@ m@,
A
@
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Dynamical Systems and Sage

Sage-dynamics project
© Started at ICERM in 2012
© Sage-days 55in 2013
© NSF grant DMS-1415294, 2014-2017 (PI: Hutz)
© IMA coding sprints 2017
© ICERM REU 2019
Resources

@ Project Page: http://wiki.sagemath.org/dynamics/
ArithmeticAndComplex

@ Reference card: (https://wiki.sagemath.org/quickref/)
@ Google group: sage-dynamics
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Where is the code?

@ Sage has a schemes framework: Affine, Projective, Toric, etc.

@ Sage has a homomorphism framework that specifies maps
between objects (homset)

@ Sage has a DynamicalSystem object (hom with domain and range
the same)
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Functionality Overview

@ Points and functions (A", P, P" x P™)

@ lteration, orbits, and preimages

© Heights, local heights, and canonical heights

© Periodic points and dynatomic polynomials

@ Critical points, critical height, and post-critically finite maps
@ Conjugation, invariants, and minimal models

@ Automorphism groups and conjugating sets

@ Rational maps, indeterminacy, dynamical degrees
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Basic Examples: Iteration

1 sage: A.<x> = AffineSpace (QQ, 1)

2 sage: f = DynamicalSystem_affine([x"2-1])

3 sage: P = A(2)

4 sage: f£(P), £(£(P)), £(£(£(P))), f.nth_iterate(P,4)

5 ((3), (8), (63), (3968))

6 sage: f.orbit (P, [0,3])

7 [(2), (3), (8), (63)]

8 sage: f.nth_iterate_map(2)

9 Dynamical System of Affine Space of dimension 1 over
Rational Field

10 Defn: Defined on coordinates by sending (x) to

11 (x4 - 2xx72)
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Basic Examples: Varieties

sage: P.<x,y,z> = ProjectiveSpace (QQ, 2)

sage: = DynamicalSystem ([ (x-2*y) "2, (x-2%z)"2,x"2])
sage: X = P.subscheme (y-2z)

sage: for Y in f.orbit (X,3):

sage: Y.defining_polynomials ()

(v = z,), (x = v,)y (x = 2,), (y = 2,)

Hh

o O~ W N =
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Height definitions

Given a point P = (Py: --- : Py)
@ The (absolute) global height is defined as

h(P) = log( Hmax IPil,))

1

[K:Q

@ The local height at a place v is defined as
Av(P) = log(max(|Pi], , 1))

@ The canonical height with respect to a morphism f is defined as

o ((P))
h(P) = Jim. gy

@ The local canonical height (Green’s function) at a place v.
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Basic Examples: Heights

sage:
sage:
sage:
sage:

1 .<x,y> = ProjectiveSpace (QQ, 1)

2 DynamicalSystem ([4*x"2-3xy~2, 4xy~2])
3 = P (3,5)

4 .local_height (2), Q.local_height (5)

5 (0.000000000000000, 1.60943791243410)

6 sage: Q.global_height ()
7

8

9

0

1

OO

1.60943791243410

sage: f.canonical_height (Q, error_bound=0.001)
2.3030927691516823627114122790

sage: sum([f.green_function(Q,t) for t in [0,2,5]])
2.3025850929940456840179914547

Benjamin Hutz Dynamical Systems in Sage Points and Heights 11/42



Application of Heights to Preperiodic points

Theorem

Let f: PN — PN be a morphism of degree d > 2 defined over a
number field.

Q@ hx(Q) = 0 ifand only if Q is preperiodic
© There exists a constant Cy depending only on f such that

Ih(f(Q)) - dh(Q)] < C.

© There exists a constant C, depending only on f such that

h(Q) - b (Q)| < Co.
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Application of Heights to Preperiodic points

Combining these we get a test for preperiodic points

Preperiodic point check

@ If A(P) > C», then not preperiodic.
© Compute forward images

@ If we encounter a cycle, return preperiodic
@ If the height becomes > C,, return not preperiodic.

a b~ 0w =

(0,1)

sage:
sage:
sage:
sage:

P.<x,y> = ProjectiveSpace (QQ, 1)

f = DynamicalSystem ([4xx"2-3xy~2, 4*y~2])
Q = P(3,2)

Q.is_preperiodic(f, return_period=True)
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All preperiodic points from heights

Algorithm
@ Find the height difference bound via Nullstellensatz
©@ Check all rational point up to bound for preperiodic

1 sage: Stime

2 sage: B = f.height_difference_bound();print B

3 sage: L = []

4 sage: for Q in P.points_of_bounded_height (bound=exp (B)
)t

5 sage: if Q.is_preperiodic (f):

6 sage: L.append (Q)

7 sage: L

8 2.48490664978800

9 [(1/2 : 1), (-1/2 : 1), (3/2 : 1), (=3/2 : 1), (1 : 0)

]
10 CPU time: 2.58 s, Wall time: 2.70 s
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Solving the equations

The periodic points of specified period form a zero-dimensional
scheme.

1 sage: P.<x,y> = ProjectiveSpace (QQ, 1)

2 sage: f = DynamicalSystem([4xx"2-3xy"2, 4xy~2])

3 sage: X = f.periodic_points(l,return_scheme=True) ;X

4 Closed subscheme of Projective Space of dimension 1
over Rational Field

5 defined by:

6 Axx"2xy — 4dxx*y 2 — 3xy"3

7 sage: X.rational_points()

8 [(-1/2 : 1), (1L : 0), (3/2 : 1)]
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Definitions: Dynatomic Polynomial

Let f € K[z] be a single variable polynomial.
Definition
The n-th dynatomic polynomial for f is defined as

o5(f) = [[(F(2) — 24,

d|n

where p is the Moebius function.

Definition
We can also define a generalized dynatomic polynomial for preperiodic

points as
VP i
(Dm,n(f) - qy;'(fm_‘] ) .

More general definitions can be made using intersection theory.
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Basic Example: Dynatomic Polynomial

We can find preperiodic points by finding the roots of the dynatomic
polynomials.

1 sage: P.<x,y> = ProjectiveSpace (QQ, 1)

2 sage: f = DynamicalSystem([4xx"2-3xy"2, 4%y~2])
3 sage: f.dynatomic_polynomial (1) .factor()

4 y x (2xx — 3%y) * (2%xx + y)

5 sage: f.dynatomic_polynomial (2).factor ()

6 (4) * (2xx + y) "2

7 sage: f.dynatomic_polynomial ([1,1]).factor ()

8 (16) * v x (2%x — y) * (2xx + 3x*y)
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Theorem (Northcott)

The set of rational preperiodic points for a morphism f : PN — PN js g
set of bounded height.

Conjecture (Morton-Silverman)

Given a morphism f : PN — PN of degree d, defined over a number
field of degree D, then there exists a constant C(d, D, N) such that

# PrePer(f) < C(d, D, N).
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Reducing mod p

Definition

Let f(x) = % for polynomials p, g. Define the resultant as

Res(f) = Res(p(x), q(x))-

Proposition

Letf(x) = %. The following are equivalent:

Q degf =degf,
©Q p(x) and q(x) have no common zeros modulo p,
© Res(f) Z0 (mod p).
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Reducing mod p

Definition

Let f(x) be a rational function. We say that a prime p is a prime of
good reduction if any condition of the Proposition is satisfied.
Otherwise we say p is a prime of bad reduction.

For a prime of good reduction iteration commutes with reduction mod

p:
fr(x) = 1 (%).
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Definition
Let f(x) be a rational function and z a periodic point of minimal period
n. Then, the multiplier of z is

Az = (") (2).

Example

For f(x) = x® — 2, we have z = 2 is a fixed point with multiplier 4.
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A precise description of n

Theorem (Morton-Silverman 1994, Zieve)
Letf: P! — P! defined over Q with deg(f) > 2. Assume that f has
good reduction at p with a rational periodic point P. Define

n = minimal period of P.

m = minimal period of P modulo p.

r = the multiplicative order of (f™)'(P) mod p
Then

n=m or n=mrp°

for some explicitly bounded integer e > 0.

See [Hut09] for higher dimensions.
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Algorithm for finding all rational preperiodic

points [Hut15]

@ For each prime p in PrimeSet with good reduction find the list of
possible global periods:
@ Find all of the periodic cycles modulo p
@ Compute m, mrp® for each cycle.
@ Intersect the lists of possible periods for all primes in PrimeSet.
© For each nin PossiblePeriods
© Find all rational solutions to f"(x) = x.
© Let PrePeriodicPoints = PeriodicPoints.
@ Repeat until PrePeriodicPoints is constant
@ Add the first rational preimage of each point in PrePeriodicPoints to
PrePeriodicPoints.
Use Weil restriction of scalars for number fields (polynomials in
dimension 1).
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sage: P.<x,y> = ProjectiveSpace (QQ,1)

sage: f = DynamicalSystem([x"2-29/16xy"2,y"2])
sage: f.rational_ preperiodic_graph ()

Looped digraph on 9 vertices

AW N =

—_

sage: R.<t>

2 sage: K.<v>
94208)

3 sage: PS.<x,y> = ProjectiveSpace (K, 1)

4 sage: f = DynamicalSystem([x"2-29/16%y"2,y"2]) #Hutz

5 sage: f.rational_preperiodic_graph() .show() #10s

PolynomialRing (QQ)
NumberField(t"3 + 16xt"2 — 10496+t +
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sage: K.<w> = QuadraticField(33)

sage: PS.<x,y> = ProjectiveSpace (K, 1)

sage: f = DynamicalSystem([x"2-71/48xy"2,y"2]) #Stoll
sage: len(f.rational_ preperiodic_points())

13

g~ W=

—_

sage: P.<x,y,z> = ProjectiveSpace (QQ, 2)

2 sage: f = DynamicalSystem([2xx"3 — 50*xx*xz"2 + 24%xz"3,5
*y 3 = 53xy*xz2"2 + 24%xz73,24xz"3])

3 sage: f.rational_preperiodic_graph() .show()
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Definition
We say that P is a critical point for f if the jacobian of f does not have
maximal rank at P. )

Definition
We say that f : P! — P is post-critically finite if all of the critical points
are preperiodic.

Definition
The critical height of f is defined as

> h(e).

cecrit
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Algorithm: is_postcritically finite()

@ Compute the critical points of f over Q
© Determine if each is preperiodic.

1 sage: P.<x,y> = ProjectiveSpace (QQ,1)

2 sage: f = DynamicalSystem([x"2 + 12xy"2, 7+x*y])
3 sage: f.critical_points (R=QQbar)

4 [(-3.464101615137755? : 1), (3.464101615137755?
5 sage: f.is_postcritically_finite()

6 False

7 sage: f.critical_height (error_bound=0.001)

8 2.8717614996729500069637701410
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Example: Lattes maps

1 sage: P.<x,y> = ProjectiveSpace (QQ,1)

2 sage: E = EllipticCurve([0,0,0,0,2]1);E

3 Elliptic Curve defined by y"2 = x"3 + 2 over Rational
Field

4 sage: f = P.Lattes_map (E,2)

5 sage: f.is_postcritically_finite()

6 True

7 sage: f.critical_point_portrait ()

8 Looped digraph on 10 vertices

9 sage: f.critical_height (error_bound=0.001)

0 8.2900752025070323779826707582e-17
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Conjugation

Definition
Given a map f : P! — P! we can conjugate by an element o € PGLy

f*=aqofoa '

This preserves the dynamical properties of f.

IP;1 4f>]P>1

ok

]Pﬂ *f>_ IP)1
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Every degree 2 polynomial is conjugate to a polynomial of the form

fo(z)=2%+¢
Example

Consider f(z) = 22 —2z 4+ 1. Leta = ((1) 1

)EPGLgthen
a:zZ—z+1.

f*(2) = a7 ((a(2))) = f(a(2)) + 1
=fz+1)-1=22-1.
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Sage Example

1 sage: P.<x,y> = ProjectiveSpace (QQbar,1)

2 sage: f = DynamicalSystem([x"2 -y~2,y"2])

3 sage: g = DynamicalSystem([x"2 — 2xx*xy + vy 2,y"2])
4 sage: f.is_conjugate (9)

5 True

6 sage: f.conjugating_set (g)

7 [[ 1 —-1]

8 [ O 17]
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Polynomial Forms

Definition

A polynomial map on P! is a map with a totally ramified fixed point.
A polynomial is in monic centered form if it is of the form

Xd + ad_QXd_2 + -+ aixX + ap.

1 sage: P.<x,y> = ProjectiveSpace (QQ, 1)
sage: f = DynamlcalSystem([4*xA3 + Txx"2xy + Sxxxy"2 +

v 3, =3%x"3 — 4xx"2xy — 2%x*xy"2])

3 sage: f.is_polynomial ()

4 True

5 sage: f.normal_form()

6 Scheme endomorphism of Projective Space of dimension 1
over Rational Field

7 Defn: Defined on coordinates by sending (x : y) to

8 (x73 + 2xx*xy~2 + y°3 : y~3)

Benjamin Hutz Dynamical Systems in Sage Conjugation, invariants, and minimal models 32/42



Moduli Space

Definition
We define Hom, to be the space of degree d morphisms on P'. }

This conjugation action gives rise to a moduli space
Md = Homd/PGLg .

It is known that
@ M, = A%, Milnor (1993) (as schemes over Z)

© The quotient is a geometric quotient, Petsche-Szpiro-Tepper
(2009)

© M, is arational variety for all d, Levy (2011)
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Invariant Functions

Theorem (Milnor (C), Silverman (Z))
There are two PGL, invariant functions o, oo such that

(01,02) : Mo = As.

Theorem (Milnor (C), Silverman (Z))
Every invariant function of M, is a polynomial in Z[o1, o).
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Multiplier Spectra, Sigma invariants

Definition
Given a point z of period n for f : P! — P! we define the multiplier at z

to be
Az = (f")(2)

Definition
We define the n-th multiplier spectrum of f, A, to be the set of
multipliers of n periodic points (with multiplicity)

An(F) = {\z: z € Perp(f)}

Definition
We define o, ; to be the i-th symmetric function on A,. We denote
On = (G'n,‘], e 70-f7,d"+1)'
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Quadratic Polynomials

Recall that every quadratic polynomial is conjugate to exactly one
polynomial of the form f;(z) = z2 + ¢. We can compute

Pery (f) = {1 e \/;_740700}

M(f) = {1 +£v1 - 4c,0}
o1(f) = {2,4c,0}

In particular, the family of quadratic polynomials represents the line
o1 =2 in MQ.

1 sage: R.<c> = QQI]

2 sage: P.<x,y> = ProjectiveSpace (R, 1)

3 sage: f = DynamicalSystem([x"2+cxy”"2,y"2])
4 sage: f.sigma_invariants(1l)

5 [2, 4xc, 0]
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We say a representation f of [f] € My is minimal if

Res(f) < Res(f*) for all « € PGL.

1 sage: PS.<x,y> = ProjectiveSpace (QQ,1)
sage: f = DynamicalSystem([6*x"2+12xxxy+7xy"2, 124x%*y]
)

3 sage: f.is_PGL_minimal ()
4 False

5 sage: f.resultant ()

6 6048
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Bruin-Molnar algorithm [BM12]

1 sage: g=f.minimal_model () ;g
Scheme endomorphism of Projective Space of dimension 1
over Rational
Field
Defn: Defined on coordinates by sending (x : y) to
(X772 + 12xx*y + 42%xy"2 : 2%x%*Yy)
sage: g.resultant ()
168

N o oW
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Reduced Model

Having found the minimal resultant, we can now conjugate by any
element of SLy(Z) without changing the resultant. We would like the
model with smallest coefficients.

Apply Cremona-Stoll [CS03] to the fixed point binary form. This gives
*almost* the minimal model

sage: PS.<x,y> = ProjectiveSpace (QQ, 1)

sage: f = DynamicalSystem([x"3 + xxy~2, y~31])

sage: m matrix (QQ, 2, 2, [-221, -1, 1, 0])

sage: f = f.conjugate(m);f

...Defn: Defined on coordinates by sending (x : y) to
(x"3 : 10793861xx"3 + 146524%xx" 2%y + 663xx*xy~2 + y~3)
sage: f.reduced_form() [0]

...Defn: Defined on coordinates by sending (x : y) to
(x"3 + x*xy~"2 : y~3)

© 00 N O O~ WD =
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Automorphism groups

Definition
The automorphism group of f is the group

Aut(f) = {o € PGLygq : f* = f}.

Determining Automorphism Groups [FMV14]

1 sage: R.<x,y> = ProjectiveSpace (QQ,1)

2 sage: f = DynamicalSystem([X"2-2xxxy—2%y 2, -2%xX"2-2xxXx*
yty~2])

3 sage: f.automorphism group (return_functions=True)

4 [x, 2/(2xx), —-x — 1, —-2*x/(2*xx + 2), (-x - 1)/x, -1/(x

+ 1)1
5 sage: f.conjugate (matrix([[-1,-1],[1,0]]1)) == £
6 True
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Indeterminacy

Definition

For maps f = (fy, ..., fs) : P" — P" a point of indeterminacy is where

f(P)=0 Vi

Definition
Define the dynamical degree of f to be

8 m\1/n
nIl_)ﬂ;Odeg(f ) |

1 sage: P2.<x,y,z> = ProjectiveSpace (QQ, 2)
2 sage: f DynamicalSystem ([x*xy, y*z, z"2])
3 sage: f.indeterminacy_points()
4 [(0 1 :0), (L =0 0)1]
5 sage: f.dynamical_degree (N=50)
6 1.08181102597739
7 sage: " ~“degrees of iterates''
82,3, 4,5,6, 7,8, 9, 10,11, 12,
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