$\begin{array}{c} \mbox{Mission statement}\\ \mbox{Approaches for computing Cohomology}\\ \mbox{Degree-wise approximation of } H^{*}(G;\mathbb{F}_{p})\\ \mbox{Benson's Completeness Criterion}\\ \mbox{Implementation in SAGE}\\ \mbox{Summary of computational results} \end{array}$

The Cohomology of finite *p*-Groups

Simon King (joint work with David J. Green)

DFG project GR 1585/4–1 Friedrich–Schiller–Universität Jena

January 22, 2009

 $\begin{array}{c} \mbox{Mission statement}\\ \mbox{Approaches for computing Cohomology}\\ \mbox{Degree-wise approximation of $H^+(G, \mathbb{F}_p)$\\ \mbox{Benson's Completeness Criterion}\\ \mbox{Implementation in SAGE}\\ \mbox{Summary of computational results} \end{array}$

Outline

- Mission statement
- 2 Approaches for computing Cohomology
 - Spectral Sequences vs. Projective Resolutions
- 3 Degree-wise approximation of $H^*(G; \mathbb{F}_p)$
 - Constructing minimal projective resolutions
 - Finding relations
 - Chosing generators
- 4 Benson's Completeness Criterion
- 5 Implementation in SAGE
 - Digression: Why C-MEATAXE?
- 6 Summary of computational results
 - Minimal generating sets and relations
 - How good is Benson's criterion?

Mission statement

Approaches for computing Cohomology Degree-wise approximation of $H^*(G; \mathbb{F}_p)$ Benson's Completeness Criterion Implementation in SAGE Summary of computational results

What is a Cohomology ring?

Let G be a finite p-group (i.e., p prime, $|G| = p^n$). We study the modular cohomology ring $H^*(G; \mathbb{F}_p)$.

- *H*^{*}(*G*; 𝔽_{*p*}) is a graded commutative finitely presented 𝔽_{*p*}-algebra (*x* · *y* = (−1)^{deg(x)·deg(y)}*y* · *x*).
- $H^*(G; \mathbb{F}_p)$ is determined by G up to isomorphism.
- Any group homomorphism φ: G₁ → G₂ gives rise to an algebra homomorphism φ^{*}: H^{*}(G₂; F_p) → H^{*}(G₁; F_p)
- Any subgroup $U \leq G$ gives rise to a restriction map $H^*(G; \mathbb{F}_p) \to H^*(U; \mathbb{F}_p)$

J. F. Carlson, 1997-2001(?)

Groups of order 64, long computation time, using $\rm MAGMA$

Mission statement

Approaches for computing Cohomology Degree-wise approximation of $H^*(G; \mathbb{F}_p)$ Benson's Completeness Criterion Implementation in SAGE Summary of computational results

DFG Project "Computational Group Cohomology"

Aim

- Compute the cohomology for many groups, including all 2328 groups of order 128 (provide minimal generating sets and relations)
- Test the Strong Benson Conjecture.
- Collect results in a data base.
- Present the results on Web pages

Web: http://users.minet.uni-jena.de/~king/cohomology/

Mission statement

Approaches for computing Cohomology Degree-wise approximation of $H^*(G; \mathbb{F}_p)$ Benson's Completeness Criterion Implementation in SAGE Summary of computational results

Performance of our software

2-groups:

- For all 267 groups of order 64:
 - ~ 27 CPU-min, ~ 38 clock-min (Intel Pentium M, 1.73 GHz)
- Very roughly 10 months for the 2328 groups of order 128:
 - 21 days for all but four groups of order 128 (parallel on two Dual Core AMD Opteron Processor 270 with 2 GHz, 16 Gb)
 - 2 months for the four exceptional cases (parallely)

We also have all but 8 cohomology rings for 3-, 5-, and 7-groups of order at most 625,

(known) Sylow–2 of the Higman-Sims group (order 512), (new) Sylow–2 of the third Conway group (order 1024) $\begin{array}{c} Mission statement\\ \textbf{Approaches for computing Cohomology}\\ Degree-wise approximation of <math>H^{r}(G;\mathbb{F}_p)\\ Benson's Completeness Criterion\\ Implementation in SAGE\\ Summary of computational results \end{array}$

Spectral Sequences vs. Projective Resolutions

Approaches for computing Cohomology

Spectral Sequences

- Lyndon–Hochschild–Serre
 → extraspecial 2–groups [D. Quillen, 1971]
- Eilenberg–Moore ~→ groups of order 32 [D. J. Rusin, 1989]

Projective resolutions

Yields approximation in increasing degree Main problem: When is the computation finished?

- Carlson's Completeness Criterion (depends on a conjecture)
- Use spectral sequences (→ HAP, G. Ellis, P. Smith 2008)
- Benson's Completeness Criterion (see below)

Mission statement Approaches for computing Cohomology Degree-wise approximation of $H^{*}(G, \mathbb{F}_{p})$ Benson's Completeness Criterion Implementation in SAGE Summary of computational results

Constructing minimal projective resolutions Finding relations Chosing generators

Constructing minimal projective resolutions

D. Green 2001

Use n. c. Gröbner basis techniques for modules over $\mathbb{F}_p G$

- Negative monomial orders (for minimality)
- Two-speed replacement rules: Type I precedes Type II

$\mathbb{F}_3C_3 \cong \mathbb{F}_3[t]/\langle t^3 \rangle, \ M = (F_3C_3 \cdot a \otimes F_3C_3 \cdot b)/\langle t \cdot a - t^2 \cdot a + t \cdot b \rangle$

Type I rule: $t^3 \rightsquigarrow 0$. Type II rule: $t \cdot a \rightsquigarrow t^2 \cdot a - t \cdot b$. Reduce $t \cdot a + t \cdot b$: $\rightsquigarrow t^2 \cdot a - t \cdot b + t \cdot b = t^2 \cdot a$ $\rightsquigarrow t^3 \cdot a - t^2 \cdot b \rightsquigarrow -t^2 \cdot b$ (Type I precedes Type II!).

Existence and uniqueness of reductions, Gröbner bases, computing kernels of homomorphisms...

 $\begin{array}{c} Mission statement\\ Approaches for computing Cohomology\\ \textbf{Degree-wise approximation of } H^{*}(G, \mathbb{F}_{p})\\ Benson's Completeness Criterion\\ Implementation in SAGE\\ Summary of computational results \end{array}$

Constructing minimal projective resolutions Finding relations Chosing generators

Finding relations

Assume we know the cohomology out to degree n; hence:

- *R_n*: Free graded-commutative algebra over 𝔽_p, given by minimal generators of *H*^{*}(*G*; 𝔽_p) of degree ≤ *n*.
- $I_n \subset R_n$, generated by degree- $\leq n$ -part of ker $(R_n \rightarrow H^*(G))$.

Compute the next degree as follows:

- Standard monomials of *I_n* of degree *n* + 1
 → decomposable (*n* + 1)-classes in cohomology.
- Find new relations in degree $n + 1 \longrightarrow I_{n+1}$.
- Indecomposable classes \rightsquigarrow new generators $\rightsquigarrow R_{n+1}$

 $\begin{array}{c} Mission statement\\ Approaches for computing Cohomology\\ \textbf{Degree-wise approximation of } H^{*}(G;\mathbb{F}_{p})\\ Benson's Completeness Criterion\\ Implementation in SAGE\\ Summary of computational results \end{array}$

Constructing minimal projective resolutions Finding relations Chosing generators

Special choice of generators

- O Nilpotent generators ↔ Restrictions to all maximal elem.
 ab. subgroups of G are nilpotent (easy to test!)
- Boring" generators: Not nilpotent, but restriction to the greatest central elem. ab. subgroup is nilpotent.
- Remaining: Duflot regular generators

Reason for that choice of generators

David Green's monomial order on R_n relies on the generator types. It simplifies the computations by magic! Also, it is used in the completeness criterion below. $\begin{array}{c} \mbox{Mission statement}\\ \mbox{Approaches for computing Cohomology}\\ \mbox{Degree-wise approximation of $H^+(G, \mathbb{F}_p)$\\ \mbox{Benson's Completeness Criterion}\\ \mbox{Implementation in SAGE}\\ \mbox{Summary of computational results} \end{array}$

Benson's Completeness Criterion

G abelian \Rightarrow degree 2 suffices. Otherwise:

- Let r be the p-Rank of G and let R_n/I_n approximate $H^*(G)$
- Let $P_1, \ldots, P_r \in R_n/I_n$ be a filter-regular HSOP, $\deg(P_i) \ge 2$ l.e., the multiplication by P_i on $R_n/(I_n + \langle P_1, ..., P_{i-1} \rangle)$ has finite kernel, for i = 1, ..., r.
- Maximal degrees of the kernels and of $R_n/(I_n + \langle P_1, ..., P_r \rangle)$ \rightsquigarrow "filter degree type" $(d_1, ..., d_{r+1})$ (after easy computation)

Theorem [D. J. Benson, 2004]

$$n > \max(0, d_{i} + i - 1)_{i=1,...,r} + \sum_{i} \deg(P_{i}) - r \implies R_{n}/I_{n} \cong H^{*}(G)$$

Remark " $n \ge ...$ " suffices if $\operatorname{rk}(Z(G)) \ge 2$
Conj. If $R_{n}/I_{n} \cong H^{*}(G)$ then $(d_{1},...,d_{r+1}) = (-1, -2, ..., -r, -r)$

 $\begin{array}{c} Mission statement\\ Approaches for computing Cohomology\\ Degree-wise approximation of <math>H^{*}(G;\mathbb{F}_{p})\\ \textbf{Benson's Completeness Criterion}\\ Implementation in SAGE\\ Summary of computational results \end{array}$

Constructing a filter-regular HSOP

- Let r = p-rk(G) and z = rk(Z(G)). Find **Duflot regular** generators $g_1, ..., g_z \in H^*(G)$.
- Let $U_1, ..., U_m \subset G$ be the maximal elementary abelian subgroups.

Using **Dickson invariants**: Compute classes $D_{i,j}$ in the polynomial part of $H^*(U_j)$, for i = 1, ..., r - z and j = 1, ..., m.

- There are classes Δ_i ∈ H^{*}(G) for i = 1, ..., r − z, simultaneously restricting to the p^{k_i}-th power of D_{i,j} for j = 1, ..., m. Very often, k_i = 0.
- g₁,..., g_z, Δ₁,..., Δ_{r-z} is a filter-regular HSOP of H^{*}(G)
 [D. J. Benson]. Computable in R_n/I_n !!

 $\begin{array}{c} \mbox{Mission statement}\\ \mbox{Approaches for computing Cohomology}\\ \mbox{Degree-wise approximation of $H^+(G, \mathbb{F}_p)$\\ \mbox{Benson's Completeness Criterion}\\ \mbox{Implementation in SAGE}\\ \mbox{Summary of computational results} \end{array}$

Improvement by existence proof

Problem: Dickson invariants may be of large degree

- We take minimal factors of the Δ_i , for decreasing the degrees.
- We use the Dickson classes *only* for computing the filter degree type (which is the same for any f. r. HSOP)!
- We prove the presence of a small-degree filter-regular HSOP

non-constructively

In R_n/I_n , mod out $g_1, ..., g_z$, possibly some $\Delta_1, ..., \Delta_{i_0}$, and all monomials of some degree d. If the quotient is finite, then there exist parameters in degree d that extend $g_1, ..., g_z, \Delta_1, ..., \Delta_{i_0}$ to a filter-regular HSOP [D. Green, S. K. 2008].

Conway(3) and others would be unfeasible without that trick!

Mission statement Approaches for computing Cohomology Degree-wise approximation of H*(G; F_p) Benson's Completeness Criterion **Implementation in SAGE** Summary of computational results

Digression: Why C-MEATAXE?

Important SAGE features

GAP, SMALLGROUPS library

 ${\rm GAP}$ functions and C-executables of David Green yield data on the group and its elementary abelian subgroups.

Cython

- Wrapper MTX for C-MEATAXE matrices (see below)
- Compute resolutions (wrapping C-programs of David Green)
- Provide new extension classes for Cochains, Chain Maps, Cohomology Rings and methods for cup product, restriction, degree-wise approximation, Benson's test, creating Web pages, etc.

Cython yields very good speed!

Mission statement Approaches for computing Cohomology Degree-wise approximation of H* (G; F_P) Benson's Completeness Criterion **Implementation in SAGE** Summary of computational results

Digression: Why C-MEATAXE?

Important SAGE features

SINGULAR

Used for all graded commutative stuff. It rocks!

- Gröbner basis of the relation ideal of group 836 of order 128:
 - \bullet > 1 month with self-made implementation (D. Green), but
 - only few hours with SINGULAR.
- Lift Dickson classes: Either by linear algebra (MTX), or by elimination (SINGULAR).
- Detection of filter regular HSOPs.

You

Your comments led to huge speed-ups by making better use of SINGULAR interface and CYTHON — Thank you!

Mission statement Approaches for computing Cohomology Degree-wise approximation of H*(G:F₂) Benson's Completeness Criterion **Implementation in SAGE** Summary of computational results

Why C-MEATAXE?

MTX matrices

Purpose: Linear Algebra over fields of order < 256Wraps a modified version of C-MEATAXE 2.2.3.

Reasons:

• David Green's programs for computing resolutions rely on C-MEATAXE 2.2.3. Re-implementation or conversion sucks.

Digression: Why C-MEATAXE?

- We need the following operations to be fast:
 - Copying, pickling, hash, equality test, element access, conversion into lists
 - Sum, difference, skalar multiplication
 - Nullspace
- Almost no need for matrix inversion or multiplication.

Mission statement Approaches for computing Cohomology Degree-wise approximation of $H^*(G; \mathbb{F}_p)$ Benson's Completeness Criterion Implementation in SAGE Summary of computational results

Digression: Why C-MEATAXE?

MTX vs. usual SAGE-3.2.3 matrices

On AMD Athlon 64 Processor 3700+ with 2.2 GHz, 1 GB RAM, and 2 GB Swap

\mathbb{F}_7 , random 500 imes 500

Hash, sum and difference was slow in $\operatorname{SAGE}\nolimits$, is now ok.

	SAGE	MTX	
copy(M)	1.29 <i>ms</i>	0.27 <i>ms</i>	
loads(dumps(M))	199 <i>ms</i>	30.3 <i>ms</i>	
==	571 <i>ns</i>	795 <i>ns</i>	(different matrices)
	1.16 <i>ms</i>	0.27 <i>ms</i>	(equal matrices)
M[i,j]	5.69 <i>µs</i>	2.24 <i>µs</i>	
M.list()	529 <i>ms</i>	15.4 <i>ms</i>	
skalar mult.	9.1 <i>ms</i>	1.6 <i>ms</i>	
nullspace	23.5 <i>s</i>	4.2 <i>s</i>	(1000 imes 500)

Mission statement Approaches for computing Cohomology Degree-wise approximation of $H^*(G; \mathbb{F}_p)$ Benson's Completeness Criterion Implementation in SAGE

Summary of computational results

Digression: Why C-MEATAXE?

MTX vs. usual SAGE-3.2.3 matrices

\mathbb{F}_2 , random 5000 $ imes$ 5000					
	SAGE	MTX			
copy(M)	4 <i>ms</i>	4.67 <i>ms</i>			
loads(dumps(M)) 10.6s 623ms					
==	608 <i>ns</i>	869 <i>ns</i>	(different matrices)		
	2.01 <i>ms</i>	3.13 <i>ms</i>	(equal matrices)		
M[i,j] 1.95μs 2.28μs					
M.list()	1.3 <i>s</i>	1.4 <i>s</i>			
nullspace	fails!	55.2 <i>s</i>	(10000 imes 5000)		
M.kernel().basis() was running out of memory.					

Conclusion

Conversion would not pay off (at least for now).

Simon King, Schiller-Universität Jena The Cohomology of finite p-Groups

Mission statement Approaches for computing Cohomology Degree-wise approximation of $H^{*}(G; \mathbb{F}_{p})$ Benson's Completeness Criterion Implementation in SAGE Summary of computational results

Minimal generating sets and relations How good is Benson's criterion?

Typical generating sets

Minimal number of generators

34 3 generators 36 1	#Gen	#gps	2322 groups have less than 34 minimal
36 1 39 1 The winner is: 67 1 Group 836	34	3	generators
39 1 I he winner is: Group 836	36	1	- , , ,
Group 836	39	1	I he winner is:
05 1 0.000	65	1	Group 836

Maximal degree of minimal generators

Deg	#gps	2301 groups have generator degree less
13	1	than 12
14	3	
16	22	I he winner is:
17	1	Group 562

Mission statement Approaches for computing Cohomology Degree-wise approximation of H^{*1} (G.F.p.) Benson's Completeness Criterion Implementation in SAGE Summary of computational results

Minimal generating sets and relations How good is Benson's criterion?

Typical relation ideals

Minimal number of relations			
nal			

Maximal degree of minimal relations			
Deg	#gps	2319 groups have relation degree less	
28	4	than 27	
30	3	The winner is:	
32	1	Group 562	
34	1	But 2298 and 2300 are hardest to obtain.	

Mission statement Approaches for computing Cohomology Degree-wise approximation of $H^*(G; \mathbb{F}_p)$ Benson's Completeness Criterion Summary of computational results

How good is Benson's criterion?

How good is Benson's criterion?

Failure of Improved Benson's Completeness Criterion

Excess	#gps	The loser is: Group 2320,
0	1779	which is the direct product of D_8
1	341	with an elementary abelian group.
2	168	
3	39	
4	1	

Failure of Duflot's Depth Bound (2313 non-abelian groups)

depth - $rk(Z(G))$	∉gps	The rank of the center is a
0	1767	lower bound for the depth of
1	508	$H^*(G)$.
2	37	The winner is: Group 2326,
3	1	extraspecial of type $+$
	$\frac{\text{depth} - \text{rk}(Z(G))}{0}$ 1 2 3	$ \frac{\text{depth} - rk(Z(G))}{0} \frac{\#gps}{1767} \\ \frac{1}{508} \\ 2 37 \\ 3 1 $

Mission statement Approaches for computing Cohomology Degree-wise approximation of H^{*}(G, F_P) Benson's Completeness Criterion Implementation in SAGE Summary of computational results

Minimal generating sets and relations How good is Benson's criterion?

To Do

- Search counterexamples for Strong Benson Conjecture. Currently: Group 299 of order 256, which is of defect 4. It shows unexpected behaviour: 77 generators up to degree 11, ~ 3000 relations up to degree 22, but still incomplete — and blocks 158 Gb hard disk...
- Add more features: Interesting invariants, Steenrod actions, \mathbb{F}_p cohomology of general finite groups
- Build a data base and create a package

Status

- $\bullet~\ensuremath{\mathsf{Various}}$ CYTHON modules, almost full doctest coverage
- A lot of C-code, various executables

— please help! THANK YOU!