
Core 2 GMP MPIR

Squaring
128 x 128 54446732 55370350
512 x 512 9320676 8172208
8192 x 8192 104065 101386
131072 x 131072 1620 1722
2097152 x 2097152 70.1 76.7

 Multiplication
128 x 128 54400830 55315582
512 x 512 7342969 8160125
8192 x 8192 71306 75225
131072 x 131072 1165 1289
2097152 x 2097152 47.8 52.9

Unbalanced
15000 x 10000 34790 36592
20000 x 10000 26612 28447
30000 x 10000 15707 16786
16777216 x 512 224 234
16777216 x 262144 9.01 9.89

Division
8192 / 32 807890 675542
8192 / 64 801590 686421
8192 / 128 527984 377947
8192 / 4096 118750 110330
8192 / 8064 1651613 1653280
131072 / 65536 1382 1371
8388608 / 4194304 4.05 4.39

K8 GMP MPIR

Squaring
128 x 128 42226804 53762100
512 x 512 10295600 12481800
8192 x 8192 165214 168034
131072 x 131072 2562 2767
2097152 x 2097152 81.0 83.4

 Multiplication
128 x 128 45649804 53767752
512 x 512 10913936 12428363
8192 x 8192 114962 118476
131072 x 131072 1754 2075
2097152 x 2097152 52.3 63.3

Unbalanced
15000 x 10000 57365 59908
20000 x 10000 44094 47322
30000 x 10000 24894 27565
16777216 x 512 345 332
16777216 x 262144 9.34 11.3

Division
8192 / 32 1507178 1319736
8192 / 64 1530848 1319605
8192 / 128 931519 478680
8192 / 4096 189753 188476
8192 / 8064 2347446 2333862
131072 / 65536 2170 2229
8388608 / 4194304 5.27 6.01

Log in to edit a copy. Download. Other published documents...

Untitled
2 hours ago by wbhart

Benchmark 2

Untitled (Sage) http://www.sagenb.org/home/pub/558/

1 of 10 5/20/09 10:44 PM

16777216 / 262144 2.64 2.80

GCD
128 x 128 2172359 2259180
512 x 512 236660 212043
8192 x 8192 5846 5497
131072 x 131072 89.2 89.6
1048576 x 1048576 4.20 4.29

XGCD
128 x 128 1028823 693319
512 x 512 176163 109519
8192 x 8192 3720 2419
131072 x 131072 52.3 51.6
1048576 x 1048576 2.81 2.57

RSA
512 16319 15019
1024 3048 3134
2048 482 479

Pi
10000 482 489
100000 20.7 22.7
1000000 1.17 1.32

Overall 1065 1043

16777216 / 262144 4.12 4.46

GCD
128 x 128 1436187 1364651
512 x 512 227624 196581
8192 x 8192 7833 6243
131072 x 131072 140 136
1048576 x 1048576 6.04 6.58

XGCD
128 x 128 910501 338531
512 x 512 173108 62580
8192 x 8192 5400 3007
131072 x 131072 84.8 82.4
1048576 x 1048576 3.88 4.08

RSA
512 20450 22476
1024 4152 5078
2048 783 882

Pi
10000 644 652
100000 28.7 32.1
1000000 1.42 1.66

Overall 1435 1446

Contributors
Jason Moxham - K8, Core2, Penryn, Nehalem, Pentium 4 assembly optimisation
Brian Gladman - MSVC port
Jason Martin - Core 2 assembly
Pierrick Gaudry - AMD 64 assembly
Anonymous Japanese contributor - assembly support
Robert Gerbicz - Root testing
William Hart - Sun, Apple, Cygwin, MSYS support, Toom 3/4/7 optimisation, Yasm switch, Fast
Extended GCD
Paul Zimmermann, Marco Bodrato - Toom 4/7
Niels Moller - Fast GCD
Paul Zimmermann, Pierrick Gaudry, Alexander Kruppa, Torbjorn Granlund - Fermat/Mersenne FFT
Michael Abshoff - fix build issues, valgrinding, Sage integration
Mariah Lennox - work on mpirbench, build farm maintenance

Untitled (Sage) http://www.sagenb.org/home/pub/558/

2 of 10 5/20/09 10:44 PM

Many others - contributions to build testing

Fast Code in MPIR

At the mpz level

struct
{
 mp_size_t _mp_size;
 mp_size_t _mp_alloc;
 mp_limb_t * _mp_data;
} __mpz_struct

typedef mpz_t __mpz_struct[1];

Checking for zero

Don't use mpz_cmp, use:

if (mpz_sgn(a) == 0)

Combined multiplication and addition:
mpz_addmul(x, a, b)

- set
mpz_submul(x, a, b)

- set
mpz_addmul_ui(x, a, b)

- set
mpz_submul_ui(x, a, b)

- set

If you did the addition separately in addmul_ui it would take 40% longer!

x b = x+ a

x b = xÀ a

x b = x+ a

x b = xÀ a

Untitled (Sage) http://www.sagenb.org/home/pub/558/

3 of 10 5/20/09 10:44 PM

Multiplication and division by powers of 2:
mpz_mul_2exp(x, a, exp)

- set
mpz_tdiv_q_2exp(x, a, exp)

- set

Exact division is faster than division with remainder:
mpz_divexact(x, a, b)

- set assuming divides
mpz_divexact_ui(x, a, b)

Don't use mpz_import or mpz_export

EVER!!

MPIR Tools

GMP compatibility

Use

./configure --enable-gmpcompat

and

make install-gmpcompat

if you wish to link MPIR against a library which is expecting GMP

Build from source - run make check

Binaries will be slower - build from source. But always do "make check".

Many functions now support SSE, SSE2, SSE3, LAHF, etc, where available - binaries aren't built with all
optimisations.

x a = 2exp

x =2 = a exp

x =b = a b a

Untitled (Sage) http://www.sagenb.org/home/pub/558/

4 of 10 5/20/09 10:44 PM

Testing with make try

In /tests/devel/ you can "make try"

DEMO

Timing with make speed

In /tune/ you can "make speed"

DEMO

Performance tuning with make tune

In /tune/ you can "make tune -f 1000000"

DEMO

Developer documentation

Some developer documentation is available in /doc/devel

Fat binaries

./configure --enable-fat

Fat binaries will pick best assembly core at runtime - but know that there is a performance deficit for small
operands

Enable asserts

./configure --enable-assert

Can help with debugging code, whether at mpz/mpq/mpf or the mpn level.

Enter the mpn's!

What is an mpn?

An mpn is a pair

{mp_limb_t * x, mp_size_t xn}

where is an array of limbs, i.e. mp_limb_t's where is the number of limbs, i.e. an mp_size_t. There is
NO MEMORY MANAGEMENT done for you.

Let's have a short example:

#include <stdio.h>
#include <stdlib.h>
#include "mpir.h"

x xn

Untitled (Sage) http://www.sagenb.org/home/pub/558/

5 of 10 5/20/09 10:44 PM

int main(void)
{
 mp_limb_t * a, * b;
 a = malloc(1001*sizeof(mp_limb_t));
 b = malloc(1000*sizeof(mp_limb_t));

 mpn_random2(a, 1000);
 mpn_random2(b, 1000);
 a[1000] = 0;

 for (long i = 0; i < 1000000; i++)
 a[1000] += mpn_addmul_1(a, b, 1000, 34567890);

 printf("a[1000] = %ld\n", a[1000]);

 free(a);
 free(b);

 return 0;
}

New assembly functions in MPIR
Lot's of new mpn functions are available on x86_64 in MPIR.

mpn_divexact_by3(rp, sp, sn) - {rp, sn} computes {sp, sn} divided by 3 (carry is non-zero if exact
division doesn't occur)
mpn_divexact_byBm1of(rp, sp, sn, f, (B-1)/f) computes {rp, sn} = {sp, sn} / f where f is a divisor of
B-1, e.g. 5, 17, 15, 51,
mpn_addadd_n(rp, sp, tp, up, sn) computes cy, {rp, sn} = {sp, sn} + {tp, sn} + {up, sn}
mpn_addsub_n(rp, sp, tp, up, sn) computes cy, {rp, sn} = {sp, sn} + {tp, sn} - {up, sn}
mpn_subadd_n(rp, sp, tp, up, sn) computes bw, {rp, sn} = {sp, sn} - {(tp, sn} + {up, sn})
mpn_addlsh1_n(rp, sp, tp, sn) computes cy, {rp, sn} = {sp, sn} + 2{tp, sn}
mpn_sublsh1_n(rp, sp, tp, sn) computes br, {rp, sn} = {sp, sn} - 2{tp, sn}
mpn_mul_2(rp, sp, sn, cp) computes cy, {rp, sn + 1} = cp[0]{sp, sn} + cp[1]B{sp, tn}
mpn_addmul_2(rp, sp, sn, cp) computes cy, {rp, sn + 1} = {rp, sn + 1} + cp[0]{sp, sn} + cp[1]B{sp,
tn}
mpn_sumdiff_n(rp, sp, tp, up, tn) computes cy, {rp, sn} = {tp, tn} + {up, tn} and bw, {sn, tn} = {tp,
tn} - {up, tn} (function returns 2*cy+bw)
mpn_mul_basecase(rp, sp, sn, tp, tn) computes {rp, sn + tn} = {sp, sn} * {tp, tn}
mpn_sqr_basecase(rp, sp, sn) computes {rp, 2*sn} = {sp, sn} * {sp, sn}

Also functions for and, andn, ior, iorn, nand, nior, xor, xnor and redc_basecase.

ASSERTS
ASSERT(condition) will raise an assert if the condition is not met
ASSERT_ALWAYS(condition) will always check the condition, even when asserts are not enabled
ASSERT_CARRY(mpn_blah(...)) will assert that the function should return a nonzero carry
ASSERT_NOCARRY(mpn_blah(...)) asserts that the function should return a zero carry - useful for
mpn_divexact_1, mpn_divexact_by3, etc
ASSERT_CODE(expr) for rolling your own assert code, i.e. expr can be anything, not just a condition
ASSERT_MPN_ZERO_P(ptr, size) asserts that the given mpn is zero (size equal to 0 is allowed)
ASSERT_MPN_NONZERO_P(ptr,size) assert that the given mpn is nonzero

Untitled (Sage) http://www.sagenb.org/home/pub/558/

6 of 10 5/20/09 10:44 PM

MACROS
MPN_CMP(result, xp, yp, size) sets result to -ve, 0 or +ve depending on whether {xp, size} is less
than equal to or greater than {yp, size}, leading zero limbs are allowed
ABS(xn), MIN(xn, yn), MAX(xn, yn) - just what they say
POW2_P(n) - whether n is an exact power of 2 (or zero)
MPN_PTR_SWAP(x, xn, y, yn) - swaps {x, xn} and {y, yn} by swapping the pointers x, y and the
lengths xn, yn, not the data
MPN_SRCPTR_SWAP(xp, xn, yp, yn) - for swapping mpn's which are source operands, i.e. those
basically declared const
MP_SIZE_T_SWAP (xn, yn) - swap two mp_size_t's
MPN_COPY(d, s, n) - copy {s, n} to {d, n}
MPN_COPY_INCR(d, s, n) - copy {s, n} to {d, n} incrementing memory locations as the copy
proceeds
MPN_COPY_DECR(d, s, n) - copy {s, n} to {d, n} decrementing memory locations as the copy
proceeds
MPN_SAME_OR_SEPARATE_P (d, s, n) returns nonzero if the mpns {d, n} and {s, n} are either the
same or completely non-overlapping
MPN_SAME_OR_INCR_P (d, s, n) returns nonzero if the mpns are the same or if it would be safe to
copy one to the other whilst incrementing memory locations
MPN_SAME_OR_DECR_P (d, s, n) returns nonzero if the mpns are the same or if it would be safe to
copy one to the other whilst decrementing memory locations
MPN_OVERLAP_P (d, dn, s, sn) returns nonzero if {d, dn} overlaps {s, sn}
MPN_REVERSE(d, s, n) set {d, n} to the reverse of {s, n}
MPN_NORMALIZE(d, dn) normalises the mpn {d, dn} - note you have to start with dn as an upper
bound on the number of limbs with possible zero leading limbs
MPN_NORMALIZE_NOT_ZERO(d, dn) - same as MPN_NORMALIZE except that it assumes the
final dn will not be zero
MPN_STRIP_LOW_ZEROS_NOT_ZERO(s, sn, low) - start with low equal to s[0], this function will
increment s and decrement sn until s[0] is nonzero and it will set low to the new s[0], assumes that {s,
sn} is not zero
MPN_LOGOPS_N_INLINE(d, s1, s2, n, operation) - applies the given operation between the limbs of
{s1, n} and {s2, n} and sets d to the result, e.g.
MPN_LOGOPS_N_INLINE(d, s1, s2, n, d[__n] = s1[__n] & s2[__n])

MPN_ZERO(s, sn) - set {s, sn} to zero
mpn_store(d, n, val) - set all limbs of {d, n} to val
mpn_com_n(d, s, n) - set {d, n} to the twos complement of {s, n}
ADDC_LIMB(cy, w, x, y) - set cy, w = x + y where x and y are limbs
SUBC_LIMB(bw, w, x, y) - set bw, w = x - y where x and y are limbs
LIMB_HIGHBIT_TO_MASK(n) - returns a limb of all 1's if n has its top bit set, otherwise returns 0
MPN_INCR_U(s, sn, incr) - set {s, sn} = {s, sn} + incr where incr is a single limb (assuming no carry)
MPN_DECR_U(s, sn, incr) - set {s, sn} = {s, sn} - incr where incr is a single limb (assuming no
borrow)

HINTS
if LIKELY(condition) - will give a hint to the CPU that the branch is likely to be taken
if UNLIKELY(condition) - will give a hint to the CPU that the branch is unlikely to be taken

Untitled (Sage) http://www.sagenb.org/home/pub/558/

7 of 10 5/20/09 10:44 PM

Temporary allocation
MPIR has a temporary memory allocation system, like Pari. Here is an example of it in action:

mp_limb_t * ws;

TMP_DECL;

/* do whatever */

TMP_MARK;
ws = TMP_ALLOC_LIMBS (count);

/* Use ws however you like */

TMP_FREE;

The temporary allocation allocates memory on the stack if it is a small quantity and on the heap if it is big.
But if you know you always want a small amount use TMP_SDECL, TMP_SMARK,
TMP_SALLOC_LIMBS, TMP_SFREE. If you know you need a big amount all the time, or you want to
avoid the stack overflowing, use TMP_BDECL, TMP_BMARK, TMP_BALLOC_LIMBS, TMP_BFREE.

Two's complement

One can use mpn's for negative numbers by making use of two's complement format and working to a fixed
precision where overflow can't occur.

Here is a specific example. We pass in three mpn's to a function, all of the same length, assuming the first
two are positive and the third is signed. We also suppose the top limb of each is zero upon entry.

void myfunction(mp_limb_t rp, mp_size_t * rn, mp_limb_t sp, mp_limb_t up, mp_limb_t vp, mp_size_t sn)
{
 mp_size_t size = ABS(sn);

 mpn_add_n(sp, sp, up, size);

 if (sn < 0)
 mpn_add_n(vp, sp, vp, size);
 else
 mpn_sub_n(vp, sp, vp, size);
 /* vp is now in twos complement format */

 mpn_lshift1(vp, vp, size);

 mpn_submul_1(rp, vp, size, 64);
}

BEWARE: right shift doesn't necessarily work because the sign bit will be shifted right. However one can
use MPN_HIGH_BIT_TO_MASK to fix the top bits. Multiplication, division and divexact won't work on
two's complement, so one needs to make the mpn's unsigned first, e.g. do mpn_com_n(sp, sp, size) and
mpn_add_1(sp, sp, size, 1) to negate them if negative.

Memory management savings

Saving memory can make a huge difference in algorithms where caching becomes important. Here are some
tips:

Break large computations up into smaller chunks to improve locality - only helps if you use the same
data over and over

Untitled (Sage) http://www.sagenb.org/home/pub/558/

8 of 10 5/20/09 10:44 PM

Allocate as little temporary memory as possible
Try using some of the output space for temporary storage during the computation - this can also save a
copy of data at the end of the computation if part of the result happens to end up in the right place
In some cases it is possible to store everything except for carry limbs, which overlap some other
temporary space. It is often more efficient to make a copy of the small bit that would be overlapped by
the carry limbs, and add it back in later, than to allocate a large temporary space and copy the whole
result over when done.

Using longlong.h

Ever wanted to get carries in C? Use longlong.h in the top level source directory of MPIR.

WARNING: just doing

#include "longlong.h"

is not enough, and will return

WRONG ANSWERS

on some platforms.

One either has to first include gmp-impl.h or one has to do something like the following (works on all C99
systems we know of):

#include

#define UWtype mp_limb_t
#define UHWtype mp_limb_t
#define UDWtype mp_limb_t
#define W_TYPE_SIZE {insert number of bits of UWtype here}
#define SItype int32_t
#define USItype uint32_t
#define DItype int64_t
#define UDItype uint64_t

#define LONGLONG_STANDALONE

#define ASSERT(condition)

#include "longlong.h"

On a machine where a limb is two unsigned longs, you might set UDWtype to mp_limb_t and UWtype and
UHWtype to unsigned long. You can define UHWtype to be half the size of UWtype if you want. You can
define ASSERT to be whatever you want, but it must be defined. On a 32 bit machine UWtype should
typically be USItype; on a 64 bit machine, UWtype should typically be UDItype

Once we have longlong.h included we have access to the following functions:

umul_ppmm(high_prod, low_prod, multipler, multiplicand) - multiplication of two UWtypes,
returning high and low limbs
__umulsidi3(a,b) - multiply two UWtypes, returning a single UDWtype
udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, denominator) - division returning
quotient and remainder. On some systems the high bit of denominator must be 1. If so, longlong.h sets
UDIV_NEEDS_NORMALIZATION to 1.
sdiv_qrnnd(quotient, remainder, high_numerator, low_numerator, denominator) - as for udiv_qrnnd,
but with signed integers - quotient is rounded towards zero.

Untitled (Sage) http://www.sagenb.org/home/pub/558/

9 of 10 5/20/09 10:44 PM

count_leading_zeros(count, x) - sets count to the number of leading zeroes of x. It sets count to
COUNT_LEADING_ZEROS_0 if x is 0. You must define that macro if you wish to use it.
count_trailing_zeros(count, x) - as for count_leading_zeros, but counts the trailing zeroes.
add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, high_addend_2, low_addend_2) -
add two 2 limb quantities
sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, high_subtrahend,
low_subtrahend) - subtract two 2 limb quantities

Untitled (Sage) http://www.sagenb.org/home/pub/558/

10 of 10 5/20/09 10:44 PM

