
mpmath: arbitrary-precision floating-point

arithmetic and special functions

Fredrik Johansson

May 18, 2009

Overview of mpmath

◮ Started in 2007 as a SymPy module as a fast alternative to
decimal.Decimal.

◮ Now standalone. Available in SymPy and Sage as
sympy.mpmath (old version).

◮ Pure-Python (can optionally use GMPY), self-contained, BSD
license.

◮ Latest release 0.11, January, 1200 downloads.

◮ Contributors: Vinzent Steinberg, Mario Pernici, Case
Vanhorsen. Occasional patches from SymPy users.

Overview of mpmath - features

◮ Simple interface: drop-in (almost) replacement for math and
scipy.

◮ Real and complex numbers, inf/nan, intervals, matrices

◮ Numbers are arbitrary-size

◮ Special functions (erf, gamma, ...)

◮ Calculus (limits, sums, derivatives, integrals, ODEs, ...),

◮ Goal: match arbitrary-precision numerics in Mathematica
feature by feature (and ideally do more)

◮ Goal: do any series, integral, etc in reference tables

Present and future development

◮ Internals of mpmath (possible improvements)

◮ Adding mpmath to Sage

◮ Special functions (summer project)

Basic arithmetic

◮ Big floats: x = m · 2e , m, e both arbitrary-precision integers.
m always long, e int or long.

◮ Arithmetic in pure Python is relatively fast at moderate
precision, e.g. x1x2 = m1m22

e1+e2 . About 2-4 times slower
than C/GMP (mpz layer).

◮ Easy way to obtain faster high-precision arithmetic: use
sage.Integer or gmpy.mpz for mantissa instead of long.

◮ Wrapper classes (mpf, mpc) provide correct rounding, type
conversions, etc. Partial workaround for slowdown: write
speed-critical functions (special functions, dot product, etc.)
in “low level” code (unwrapped numbers).

◮ Current and future development: implement low level code as
well as wrapper classes in Cython.

Backend comparison (mpmath unit tests)

pure python backend - 69 seconds

sage backend (yesterday) - 97 seconds

sage backend (today) - 67 seconds

gmpy backend - 37 seconds

Cython backend

Results from Mario Pernici (May 11):

Here is a benchmark with timings_mpmath.py using

gmpy in Cython with dps=100

mpmath sage

add 0.00046 0.00043

mul 0.00077 0.00052

div 0.0012 0.00080

sqrt 0.0018 0.0014

exp 0.011 0.012

log 0.012 0.017

sin 0.011 0.013

cos 0.010 0.0091

acos 0.024 0.075

atan 0.013 0.066

Algorithms: elementary functions

◮ Code minimization: all elementary functions (real and
complex) can be reduced to the Taylor series of (for example)
cos, cosh, atan and atanh of real variables.

◮ Implementation directly on top of long / mpz.

◮ Need to optimize for both small and large precisions.
Currently working on tuning the code.

Exponential / trigonometric functions

◮ Use ex = cosh x + sinh x , since Taylor series for cosh has half
as many terms). Get sinh(x) [sin(x)] from cosh(x) [cos(x)]
with a square root.

◮ Convergence acceleration: n-fold application of half-argument
formula cosh x = 2cosh(1

2x)2 − 1. Choosing n = p1/2 reduces
number of terms (= multiplication count) from O(p) to
O(p1/2).

◮ Sum r series concurrently, e.g. r = 4:

cosh x = (1 +
x8

8!
+ . . .) + x2(

1

2!
+

x8

10!
+ . . .)+

x4(
1

4!
+

x8

12!
+ . . .) + x6(

1

6!
+

x8

14!
+ . . .).

Complexity (n and r chosen optimally): about O(p1/3)
multiplications.

Logarithm / arctangent

◮ Use log x = 2atanh x−1
x+1 .

◮ Use Taylor series for atan/atanh. Converges rapidly only for
|x | ≪ 1, so argument reductions mandatory.

◮ Reduction/convergence acceleration: n-fold application of
half-argument formula (uses square roots); sum r series
concurrently.

◮ Faster, low precision: cache log(m/2n) and atan(m/2n)
rewrite x as t + m/2n using addition theorems.

◮ Can also use Newton’s method (high overhead).

◮ Very high precision (≫ 1000 digits): use AGM for log.
Compute exp from log using Newton’s method. Complexity:
O(log p) multiplications.

Hypergeometric functions

◮ Generalized hypergeometric function:

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑

n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)n

zn

n!

◮ Most common: 0F1, 1F1, 2F1 (usually with ak , bk ∈ Q)

◮ Particular cases: elementary functions, error functions,
exponential/hyperbolic/trigonometric integrals, incomplete
gamma function, Fresnel integrals, Bessel functions, Airy
functions, Legendre/Chebyshev/Jacobi functions.

◮ Methods: direct summation, asymptotic expansions, continued
fractions, expansions around poles, special-purpose code

Other functions

Many important functions are not of the hypergeometric type.
Examples:

◮ Gamma function

◮ Polygamma functions

◮ Theta functions

◮ Zeta functions

◮ ...

Methods: Euler-Maclaurin summation, special-purpose
approximations, numerical integration
Difficulties: Hard to determine correct (let alone optimal)
parameters and cutoffs

In progress: fast gamma function

◮ Use Maclaurin series for 1
Γ(z) with near-optimal truncation.

◮ Timings for gamma(3.7) (milliseconds)
digits sage mpmath(sage) mpmath(gmpy) new

50 0.30 1.25 0.41 0.09
150 1.65 3.62 1.45 0.19
500 33.9 21.5 15.5 1.84
1000 289 98.2 96.8 8.1

◮ Calculating n Maclaurin coefficients requires
ζ(2), ζ(3), . . . , ζ(n) and O(n2) multiplications.
Precomputation time: 0.1 seconds @ 150 digits, 6 seconds @
1000 digits.

◮ Separate algorithm for Γ(p/q)

◮ Separate algorithm for log gamma, and for Γ(z), z large
(Stirling’s series, to be implemented)

Mixed machine-precision and arbitrary-precision

◮ Where appropriate, use abstract code that works with any
number type (provided a suitable wrapper layer).

◮ Example (Bessel I function):

@defun_wrapped

def besseli(A,n,x):

if A.isint(n):

n = abs(int(n))

hx = x/2

return hx**n * A.hyp0f1(n+1, hx**2) / A.factorial(n)

◮ Context A implements fundamental functions (e.g. 0F1, n!) in
an optimized fashion. Can also take care of adaptive
evaluation (possibly requiring directives in the function
description).

◮ Can support arbitrary-precision floats, Python floats, intervals,
...

