mpmath: arbitrary-precision floating-point arithmetic and special functions

Fredrik Johansson

May 18, 2009

Overview of mpmath

- Started in 2007 as a SymPy module as a fast alternative to decimal. Decimal.
- Now standalone. Available in SymPy and Sage as sympy.mpmath (old version).
- Pure-Python (can optionally use GMPY), self-contained, BSD license.
- Latest release 0.11, January, 1200 downloads.
- Contributors: Vinzent Steinberg, Mario Pernici, Case Vanhorsen. Occasional patches from SymPy users.

Overview of mpmath - features

- Simple interface: drop-in (almost) replacement for math and scipy.
- Real and complex numbers, inf/nan, intervals, matrices
- Numbers are arbitrary-size
- Special functions (erf, gamma, ...)
- Calculus (limits, sums, derivatives, integrals, ODEs, ...),
- Goal: match arbitrary-precision numerics in Mathematica feature by feature (and ideally do more)
- Goal: do any series, integral, etc in reference tables

Present and future development

- Internals of mpmath (possible improvements)
- Adding mpmath to Sage
- Special functions (summer project)

Basic arithmetic

- Big floats: $x=m \cdot 2^{e}, m, e$ both arbitrary-precision integers. m always long, e int or long.
- Arithmetic in pure Python is relatively fast at moderate precision, e.g. $x_{1} x_{2}=m_{1} m_{2} 2^{e_{1}+e_{2}}$. About 2-4 times slower than C/GMP (mpz layer).
- Easy way to obtain faster high-precision arithmetic: use sage. Integer or gmpy.mpz for mantissa instead of long.
- Wrapper classes (mpf, mpc) provide correct rounding, type conversions, etc. Partial workaround for slowdown: write speed-critical functions (special functions, dot product, etc.) in "low level" code (unwrapped numbers).
- Current and future development: implement low level code as well as wrapper classes in Cython.

Backend comparison (mpmath unit tests)

pure python backend - 69 seconds
sage backend (yesterday) - 97 seconds
sage backend (today) - 67 seconds
gmpy backend - 37 seconds

Cython backend

Results from Mario Pernici (May 11):

Here is a benchmark with timings_mpmath.py using gmpy in Cython with dps=100
mpmath sage
add 0.000460 .00043
mul 0.000770 .00052
div 0.00120 .00080
sqrt $0.0018 \quad 0.0014$
$\exp 0.011 \quad 0.012$
$\log 0.012 \quad 0.017$
$\sin 0.011 \quad 0.013$
cos $0.010 \quad 0.0091$
$\operatorname{acos} 0.024 \quad 0.075$
atan 0.0130 .066

Algorithms: elementary functions

- Code minimization: all elementary functions (real and complex) can be reduced to the Taylor series of (for example) cos, cosh, atan and atanh of real variables.
- Implementation directly on top of long / mpz.
- Need to optimize for both small and large precisions. Currently working on tuning the code.

Exponential / trigonometric functions

- Use $e^{x}=\cosh x+\sinh x$, since Taylor series for cosh has half as many terms). Get $\sinh (x)[\sin (x)]$ from $\cosh (x)[\cos (x)]$ with a square root.
- Convergence acceleration: n-fold application of half-argument formula $\cosh x=2 \cosh \left(\frac{1}{2} x\right)^{2}-1$. Choosing $n=p^{1 / 2}$ reduces number of terms ($=$ multiplication count) from $O(p)$ to $O\left(p^{1 / 2}\right)$.
- Sum r series concurrently, e.g. $r=4$:

$$
\begin{gathered}
\cosh x=\left(1+\frac{x^{8}}{8!}+\ldots\right)+x^{2}\left(\frac{1}{2!}+\frac{x^{8}}{10!}+\ldots\right)+ \\
x^{4}\left(\frac{1}{4!}+\frac{x^{8}}{12!}+\ldots\right)+x^{6}\left(\frac{1}{6!}+\frac{x^{8}}{14!}+\ldots\right)
\end{gathered}
$$

Complexity (n and r chosen optimally): about $O\left(p^{1 / 3}\right)$ multiplications.

Logarithm / arctangent

- Use $\log x=2$ atanh $\frac{x-1}{x+1}$.
- Use Taylor series for atan/atanh. Converges rapidly only for $|x| \ll 1$, so argument reductions mandatory.
- Reduction/convergence acceleration: n-fold application of half-argument formula (uses square roots); sum r series concurrently.
- Faster, low precision: cache $\log \left(m / 2^{n}\right)$ and $\operatorname{atan}\left(m / 2^{n}\right)$ rewrite x as $t+m / 2^{n}$ using addition theorems.
- Can also use Newton's method (high overhead).
- Very high precision (>1000 digits): use AGM for log. Compute exp from log using Newton's method. Complexity: $O(\log p)$ multiplications.

Hypergeometric functions

- Generalized hypergeometric function:

$$
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{n} \ldots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!}
$$

- Most common: ${ }_{0} F_{1},{ }_{1} F_{1},{ }_{2} F_{1}$ (usually with $a_{k}, b_{k} \in \mathbb{Q}$)
- Particular cases: elementary functions, error functions, exponential/hyperbolic/trigonometric integrals, incomplete gamma function, Fresnel integrals, Bessel functions, Airy functions, Legendre/Chebyshev/Jacobi functions.
- Methods: direct summation, asymptotic expansions, continued fractions, expansions around poles, special-purpose code

Other functions

Many important functions are not of the hypergeometric type. Examples:

- Gamma function
- Polygamma functions
- Theta functions
- Zeta functions

Methods: Euler-Maclaurin summation, special-purpose approximations, numerical integration Difficulties: Hard to determine correct (let alone optimal) parameters and cutoffs

In progress: fast gamma function

- Use Maclaurin series for $\frac{1}{\Gamma(z)}$ with near-optimal truncation.
- Timings for gamma(3.7) (milliseconds)

digits	sage	mpmath(sage)	mpmath(gmpy)	new
50	0.30	1.25	0.41	0.09
150	1.65	3.62	1.45	0.19
500	33.9	21.5	15.5	1.84
1000	289	98.2	96.8	8.1

- Calculating n Maclaurin coefficients requires $\zeta(2), \zeta(3), \ldots, \zeta(n)$ and $O\left(n^{2}\right)$ multiplications. Precomputation time: 0.1 seconds @ 150 digits, 6 seconds @ 1000 digits.
- Separate algorithm for $\Gamma(p / q)$
- Separate algorithm for log gamma, and for $\Gamma(z), z$ large (Stirling's series, to be implemented)

Mixed machine-precision and arbitrary-precision

- Where appropriate, use abstract code that works with any number type (provided a suitable wrapper layer).
- Example (Bessel I function):
@defun_wrapped
def besseli(A,n,x):
if A.isint(n):
$\mathrm{n}=\mathrm{abs}($ int $(\mathrm{n}))$
$\mathrm{hx}=\mathrm{x} / 2$
return $\mathrm{hx} * * \mathrm{n}$ * A.hyp0f1(n+1, hx**2) / A.factorial(r
- Context A implements fundamental functions (e.g. o $F_{1}, n!$) in an optimized fashion. Can also take care of adaptive evaluation (possibly requiring directives in the function description).
- Can support arbitrary-precision floats, Python floats, intervals,

