Mathematics Computing

Simplicial complexes in Sage

J. H. Palmieri

University of Washington

Seattle, 17 May 2009

Simplicial complexes Homology

A simplicial complex is defined by specifying a set V of (vertices) and a set \mathcal{F} of subsets of V (simplices) closed under taking subsets: if S is a simplex, then so is every subset of S.

Let
$$V = \{0, 1, 2, ..., n\}$$
.
 $S = \{i\} \leftrightarrow \text{vertex } i$
 $S = \{i, j\} \leftrightarrow \text{edge between } i \text{ and } j$
 $S = \{i, j, k\} \leftrightarrow \text{triangle determined by } i, j, k$
etc.

An efficient way to define one: specify V and the simplices which are maximal w.r.t. inclusion.

Mathematics Simplicial Computing Homology

Let *K* be a simplicial complex. The homology of *K*, written $H_*(K)$, is defined as follows: form a chain complex $C_*(K)$ with $C_n(K)$ equal to the free abelian group on the *n*-dimensional simplices of *K*, and with differential $d_n : C_n(K) \to C_{n-1}(K)$ defined by

$$d_n([v_0, v_1, \ldots, v_n]) = \sum_{i=0}^n (-1)^i [v_0, \ldots, \hat{v}_i, \ldots, v_n],$$

where $[v_0, ..., v_n]$ is the simplex determined by the listed vertices and the hat \hat{v}_i means to omit that vertex.

Can check:
$$d_n \circ d_{n+1} = 0$$
.
Define: $H_n(K) = \frac{\ker d_n : C_n(K) \to C_{n-1}(K)}{\operatorname{im} d_{n+1} : C_{n+1}(K) \to C_n(K)}$.

~

 \sim

You can also work with coefficients: for any commutative ring *R*, define

$$H_n(K; R) = \frac{\ker d_n : C_n(K) \otimes R \to C_{n-1}(K) \otimes R}{\operatorname{im} d_{n+1} : C_{n+1}(K) \otimes R \to C_n(K) \otimes R}.$$

Also have relative homology: if *L* is a subcomplex of *K*, then define $C_*(K, L) = C_*(K)/C_*(L)$, and define

$$H_n(K,L) = \frac{\ker d_n : C_n(K,L) \to C_{n-1}(K,L)}{\operatorname{im} d_{n+1} : C_{n+1}(K,L) \to C_n(K,L)}.$$

(Note that $C_*(K, L)$ is free abelian on the simplices which are in K but not in L.)

Basic implementation The issues Timings Comparisons, to do

Implemented in Sage:

- Chain complexes
- Simplicial complexes
 - define by specifying vertices and facets, or
 - choose from a list of pre-defined complexes
- Various operations on simplicial complexes: join, product, barycentric subdivision, suspension, cone, Stanley-Reisner ring, ...

I'm mainly interested in computing homology. The main computational issue is:

 computing the Smith normal form of the matrix for the differential d_n.

(Literature review: [DHSW], ...)

Some timings:

```
sage: time S62 = simplicial_complexes.\
NotIConnectedGraphs(6,2)
CPU times: user 0.06 s, sys: 0.01 s, total: 0.07 s
Wall time: 0.91 s
sage: time C62 = S62.chain_complex()
CPU times: user 8.37 s, sys: 0.47 s, total: 8.84 s
Wall time: 20.66 s
```

				Mathematics Computing	Basic imp The issue Timings Comparis	lementation s ons, to do		
<pre>sage: S62.f_vector()</pre>								
[1,	15, 1 1470,	L05 30)6, 3	5, 1365 0]	, 3003,	4945	, 5715,	3990,
<pre>sage: sum(S62.f_vector())</pre>								
2140	00							
<pre>sage: C62.differential()</pre>								
{ 0 :	[],							
1:	15 x	10)5 sp	arse ma	trix ov	ver In	teger Ri	ing,
2:	105 2	x 4	155 s	parse m	atrix c	over I	nteger F	Ring,
3:	455 2	ĸ 1	L365	sparse :	matrix	over	Integer	Ring,
4:	1365	Х	3003	sparse	matrix	k over	Integer	Ring,
5:	3003	Х	4945	sparse	matrix	k over	Integer	Ring,
6:	4945	Х	5715	sparse	matrix	x over	Integer	Ring,
7:	5715	Х	3990	sparse	matrix	k over	Integer	r Ring,
8:	3990	Х	1470	sparse	matrix	k over	Integer	r Ring,
9:	1470	Х	306	sparse :	matrix	over	Integer	Ring,

```
Mathematics<br/>ComputingBasic implementation<br/>The issues<br/>Timings<br/>Comparisons, to dosage: time C62.homology (base_ring=GF(2))CPU times: user 3.50 s, sys: 0.20 s, total: 3.70 s<br/>Wall time: 3.91 s
```

On the other hand,

```
sage: time C62.homology()
```

takes hours on my iMac. For example:

```
sage: mat = C62.differential(5); mat
3003 x 4945 sparse matrix over Integer Ring
sage: time mat.elementary_divisors()
CPU times: user 1926.47 s, sys: 71.45 s, total: 199
Wall time: 2033.12 s
```


One way to repair this: use smaller matrices.

Observation: if *L* is a subcomplex of *K* with $H_*(L) = 0$, then $H_*(K, L) \cong H_*(K)$.

So look for a large subcomplex *L* with trivial homology. Then the matrices involved in computing $H_*(K, L)$ will be smaller than those used to compute $H_*(K)$:

```
sage: S62 = simplicial_complexes.NotIConnectedGraph
sage: time L62 = S62._contractible_subcomplex()
CPU times: user 17.84 s, sys: 0.03 s, total: 17.87
Wall time: 17.97 s
sage: time C62 = S62.chain_complex(subcomplex=L62)
CPU times: user 1.91 s, sys: 0.01 s, total: 1.93 s
Wall time: 1.99 s
```

```
sage: S62.f vector()
[1, 15, 105, 455, 1365, 3003, 4945, 5715, 3990,
   1470, 306, 30]
sage: [a-b \text{ for } (a,b) \text{ in } zip(S62.f \text{ vector}(), \setminus
   L62.f vector())]
[0, 0, 0, 0, 0, 0, 24, 158, 236, 96, 20, 2]
sage: time C62.homology()
CPU times: user 0.18 s, sys: 0.01 s, total: 0.18 s
Wall time: 0.21 s
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: Z<sup>2</sup>4,
   8: 0, 9: 0, 10: 0}
```

In summary:

```
sage: S62 = simplicial_complexes.\
   NotIConnectedGraphs(6,2)
sage: time S62.homology()
CPU times: user 20.49 s, sys: 0.18 s, total: 20.67
Wall time: 21.74 s
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: Z^24,
        8: 0, 9: 0, 10: 0}
```

Information is also cached:

Comparison to other implementations:

Mathematica

• **Maple** Moise: "Moise is not designed to be an optimal way to do these calculations"

 Gap : has an optional package which is much faster than Sage (10–100 times faster?)
 Package is written by Dumas, Heckenbach, Saunders, Welker

I had a hard time installing it...

Basic implementation The issues Timings Comparisons, to do

Ways to speed up our version:

- Rewrite parts of the code in Cython
- Speed up Smith normal form computations sparse implementation? Also see [DHSW]
- Reduce mod p? Open problem...

Other things to consider implementing:

- simplicial sets See Kenzo
- cubical sets see Chomp (?)
- delta complexes, almost-simplicial complexes
- CW complexes