Simplicial complexes in Sage

J. H. Palmieri

University of Washington

Seattle, 17 May 2009

A simplicial complex is defined by specifying a set V of (vertices) and a set \mathcal{F} of subsets of V (simplices) closed under taking subsets: if S is a simplex, then so is every subset of S.

Let $V=\{0,1,2, \ldots, n\}$.
$S=\{i\} \leftrightarrow$ vertex i
$S=\{i, j\} \leftrightarrow$ edge between i and j
$S=\{i, j, k\} \leftrightarrow$ triangle determined by i, j, k etc.

An efficient way to define one: specify V and the simplices which are maximal w.r.t. inclusion.

Let K be a simplicial complex. The homology of K, written $H_{*}(K)$, is defined as follows: form a chain complex $C_{*}(K)$ with $C_{n}(K)$ equal to the free abelian group on the n-dimensional simplices of K, and with differential $d_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$ defined by

$$
d_{n}\left(\left[v_{0}, v_{1}, \ldots, v_{n}\right]\right)=\sum_{i=0}^{n}(-1)^{i}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]
$$

where $\left[v_{0}, \ldots, v_{n}\right]$ is the simplex determined by the listed vertices and the hat \hat{v}_{i} means to omit that vertex.

Can check: $d_{n} \circ d_{n+1}=0$.
Define: $H_{n}(K)=\frac{\operatorname{ker} d_{n}: C_{n}(K) \rightarrow C_{n-1}(K)}{\operatorname{im} d_{n+1}: C_{n+1}(K) \rightarrow C_{n}(K)}$.

You can also work with coefficients: for any commutative ring R, define

$$
H_{n}(K ; R)=\frac{\operatorname{ker} d_{n}: C_{n}(K) \otimes R \rightarrow C_{n-1}(K) \otimes R}{\operatorname{im} d_{n+1}: C_{n+1}(K) \otimes R \rightarrow C_{n}(K) \otimes R} .
$$

Also have relative homology: if L is a subcomplex of K, then define $C_{*}(K, L)=C_{*}(K) / C_{*}(L)$, and define

$$
H_{n}(K, L)=\frac{\operatorname{ker} d_{n}: C_{n}(K, L) \rightarrow C_{n-1}(K, L)}{\operatorname{im} d_{n+1}: C_{n+1}(K, L) \rightarrow C_{n}(K, L)}
$$

(Note that $C_{*}(K, L)$ is free abelian on the simplices which are in K but not in L.)

Implemented in Sage:

- Chain complexes
- Simplicial complexes
- define by specifying vertices and facets, or
- choose from a list of pre-defined complexes
- Various operations on simplicial complexes: join, product, barycentric subdivision, suspension, cone, Stanley-Reisner ring, ...

I'm mainly interested in computing homology. The main computational issue is:

- computing the Smith normal form of the matrix for the differential d_{n}.
(Literature review: [DHSW], ...)

Some timings:

sage: time $562=$ simplicial_complexes. \backslash
NotIConnectedGraphs $(6,2)$
CPU times: user 0.06 s , sys: 0.01 s , total: 0.07 s
Wall time: 0.91 s
sage: time $\mathrm{C} 62=$ S62.chain_complex()
CPU times: user 8.37 s , sys: 0.47 s , total: 8.84 s
Wall time: 20.66 s
sage: S62.f_vector()
$[1,15,105,455,1365,3003,4945,5715,3990$, $1470,306,30]$
sage: sum(S62.f_vector())
21400
sage: C62.differential()
\{0: [],
1: 15 x 105 sparse matrix over Integer Ring,
2: 105 x 455 sparse matrix over Integer Ring,
3: 455 x 1365 sparse matrix over Integer Ring,
4: 1365 x 3003 sparse matrix over Integer Ring,
5: 3003 x 4945 sparse matrix over Integer Ring,
6: 4945×5715 sparse matrix over Integer Ring,
7: 5715 x 3990 sparse matrix over Integer Ring,
8: 3990 x 1470 sparse matrix over Integer Ring,
9: 1470 x 306 sparse matrix over Integer Ring,
sage: time C62.homology (base_ring=GF (2))
CPU times: user 3.50 s , sys: 0.20 s , total: 3.70 s Wall time: 3.91 s

On the other hand,

sage: time C62.homology()
takes hours on my iMac. For example:
sage: mat $=$ C62.differential(5); mat 3003 x 4945 sparse matrix over Integer Ring
sage: time mat.elementary_divisors()
CPU times: user 1926.47 s, sys: 71.45 s , total: 199 Wall time: 2033.12 s

One way to repair this: use smaller matrices.
Observation: if L is a subcomplex of K with $H_{*}(L)=0$, then $H_{*}(K, L) \cong H_{*}(K)$.

So look for a large subcomplex L with trivial homology. Then the matrices involved in computing $H_{*}(K, L)$ will be smaller than those used to compute $H_{*}(K)$:
sage: S62 = simplicial_complexes.NotIConnectedGraph sage: time $\mathrm{L} 62=\mathrm{S} 62$._contractible_subcomplex()
CPU times: user 17.84 s , sys: 0.03 s , total: 17.87 Wall time: 17.97 s
sage: time $\mathrm{C} 62=\mathrm{S} 62$. chain_complex(subcomplex=L62) CPU times: user 1.91 s , sys: 0.01 s , total: 1.93 s Wall time: 1.99 s
sage: S62.f_vector()
$[1,15,105,455,1365,3003,4945,5715,3990$, 1470, 306, 30]
sage: [a-b for (a,b) in zip(S62.f_vector(), \} L62.f_vector ())]
$[0,0,0,0,0,0,24,158,236,96,20,2]$
sage: time C62.homology()
CPU times: user 0.18 s, sys: 0.01 s , total: 0.18 s
Wall time: 0.21 s
$\left\{0: 0,1: 0,2: 0,3: 0,4: 0,5: 0,6: 0,7: Z^{\wedge} 24\right.$, 8: 0, 9: 0, 10: 0\}

In summary:

sage: S62 = simplicial_complexes. \backslash
NotIConnectedGraphs $(6,2)$
sage: time S62.homology()
CPU times: user 20.49 s, sys: 0.18 s , total: 20.67
Wall time: 21.74 s

```
{0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: Z^24,
    8: 0, 9: 0, 10: 0}
```

Information is also cached:
sage: time S62.homology()
CPU times: user 0.21 s, sys: 0.01 s, total: 0.22 s Wall time: 0.23 s $\left\{0: 0,1: 0,2: 0,3: 0,4: 0,5: 0,6: 0,7: Z^{\wedge} 24\right.$, 8: 0, 9: 0, 10: 0$\}$

Comparison to other implementations:

- Mathematica

- Maple Moise: "Moise is not designed to be an optimal way to do these calculations"
- Gap : has an optional package which is much faster than Sage (10-100 times faster?)
Package is written by Dumas, Heckenbach, Saunders, Welker
I had a hard time installing it. . .

Ways to speed up our version:

- Rewrite parts of the code in Cython
- Speed up Smith normal form computations - sparse implementation? Also see [DHSW]
- Reduce mod p? Open problem...

Other things to consider implementing:

- simplicial sets - See Kenzo
- cubical sets - see Chomp (?)
- delta complexes, almost-simplicial complexes
- CW complexes

