
All About Cython
http://www.cython.org

Robert Bradshaw and Craig Citro
UW Math

May 16, 2009

http://www.cython.org

Outline

1 Introduction

2 Cython: The Project

3 Cython and Sage

Outline

1 Introduction

2 Cython: The Project

3 Cython and Sage

What’s Cython?

Cython is a language extremely close to Python that allows you to:

write extremely fast code,

stay happily oblivious to the Python/C API,

easily mix Python and C types, and

use C/C++ libraries from Python with a minimal amount of pain and
heartache.

Examples

sage : def mysum(N) :
. . . : s = 0
. . . : f o r k i n range (N) :
. . . : s += k
. . . : r e t u r n s

sage : t ime mysum(10∗∗6)
499999500000L
Time : CPU 0.25 s , Wal l : 0 .25 s

sage : : def mysum2(N) :
. . . : r e t u r n sum(range (N))

sage : t ime mysum2(10∗∗6)
499999500000L
Time : CPU 0.19 s , Wal l : 0 .19 s

Examples

def mysum c (N) :
cd e f i n t k
cde f l ong l ong s = 0

f o r k i n range (N) :
s += k

r e t u r n s

So we compile this bit of Cython code, and we have:

sage : %cython
. . . : def mysum c (n) :
. . . : c d e f i n t k
. . . : c d e f l ong l ong s
. . . : s = 0
. . . : f o r k i n range (n) :
. . . : s += k
. . . : r e t u r n s

sage : t ime mysum c (10∗∗6)
499999500000L
Time : CPU 0.00 s , Wal l : 0 .00 s

Examples

Yeah, this one is just a wee bit faster:

sage : t i m e i t (’mysum(10∗∗6) ’)
5 loops , b e s t o f 3 : 255 ms pe r l oop

sage : t i m e i t (’mysum c (10∗∗6) ’)
625 loops , b e s t o f 3 : 1 .23 ms pe r l oop

sage : 255/1.23
207.317073170732

Examples

Of course, there are limitations:

sage : mysum c (10∗∗10)
Traceback (most r e c e n t c a l l l a s t) :
. . .
Ov e r f l owE r r o r : l ong i n t too l a r g e to conv e r t to i n t

Cython

Cython (http://www.cython.org) lets you:

declare attributes for your classes with C datatypes

declare methods to take and return C datatypes

interface with your existing C/C++ libraries

http://www.cython.org

Cython

No one wants to declare types for all of their objects, and manually allocate
and deallocate our C objects – this is one of the reasons we aren’t using C in
the first place!

We don’t have to. The Cython development model:

Write code in Python.

Get it working correctly.

Profile the code.

Move the inner loops to Cython.

Cython: It Works

Jason Grout:

> I spent two or three days working on this. Here is the end result: 0.24
> seconds compared to 150 seconds. Such is the power of Cython :). That’s
> a speedup of a factor of 150.64/0.24=627!

This particular function, because it is so fast now, has become a regular tool in
our research and has led to discovering at least one counter-example to a
conjecture that was open for several months.

One def to rule them all . . .

There are three ways to declare a function in Cython:

def: The usual Python declaration; uses Python calling conventions, and
takes Python types

cdef: A C declaration; uses C calling conventions, takes Python or C types

cpdef: The best of both worlds

Different defs for different folks . . .

Let’s see an example:

def ex t end py (s e l f , d) :
s e l f . l e n g t h += d

cde f e x t end c (s e l f , i n t d) :
s e l f . l e n g t h += d

cpde f ex tend (s e l f , i n t d) :
s e l f . l e n g t h += d

Different defs for different folks . . .

I n [3] : %t ime b . t i m e t e s t (1 , 10∗∗7 , ’ de f ’)
CPU t imes : u s e r 1 .55 s , s y s : 0 .00 s , t o t a l : 1 .56 s
Wal l t ime : 1 .57 s

I n [5] : %t ime b . t i m e t e s t (1 , 10∗∗7 , ’ cde f ’)
CPU t imes : u s e r 0 .07 s , s y s : 0 .00 s , t o t a l : 0 .07 s
Wal l t ime : 0 .07 s

I n [7] : %t ime b . t i m e t e s t (1 , 10∗∗7 , ’ cpdef ’)
CPU t imes : u s e r 0 .09 s , s y s : 0 .00 s , t o t a l : 0 .09 s
Wal l t ime : 0 .09 s

Different defs for different folks . . .

I n [4] : %t ime f o r i n range (10∗∗7) : b . e x t end py (1)
CPU t imes : u s e r 2 .74 s , s y s : 0 .15 s , t o t a l : 2 .89 s
Wal l t ime : 2 .93 s

I n [6] : %t ime f o r i n range (10∗∗7) : b . ex tend (1)
CPU t imes : u s e r 2 .85 s , s y s : 0 .04 s , t o t a l : 2 .89 s
Wal l t ime : 2 .92 s

Outline

1 Introduction

2 Cython: The Project

3 Cython and Sage

Cython

Cython is open source, freely available under the Apache License.

Web page: http://www.cython.org

Mercurial: http://hg.cython.org

Wiki: http://wiki.cython.org

Bugtracker: http://trac.cython.org/

Mailing list: cython-dev@codespeak.net

There are more than twelve Cython developers . . .

Lead developers: Stephan Behnel, Robert Bradshaw
Dag Sverre Seljebotn (Google Summer of Code 2008): Tight integration
of Cython types and buffer types (see PEP 3118), used by Numpy and PIL
Large, active development community:

Cython under many names

A quick history:

Cython is a fork of the Pyrex project, started by Greg Ewing (first released
in 2002)

Began life as part of the Sage project (and originally called “SageX”) in
2006, work mostly by William Stein, Martin Albrecht, and Robert
Bradshaw

Lots of outside interest, particularly from Stefan Behnel (who was
maintaining another Pyrex fork, lxml)

Cython first launched in 2007

Does it cook breakfast, too?

So there are still a few things not supported in Cython. Most of these are
simply just a lack of developer time so far:

Closures

Closures

Closures

Generators

Multiple Inheritance (no plan right now . . .)

Other various bits: http://wiki.cython.org/Unsupported

http://wiki.cython.org/Unsupported

Would you like to know more?

There’s a lot of interesting stuff I didn’t get to talk about . . .

Cython support for built-in types (cdef list ls . . .)

Automatic conversion between most Python and C/C++ types (whenever
it would make sense)

Exposing Cython classes (.pxd files for declarations, . . .)

Cython can also be used to interface with C++ libraries (only a small
amount of black magic needed!)

Robert will talk more about these in a few minutes . . .

Outline

1 Introduction

2 Cython: The Project

3 Cython and Sage

Cython as far as the eye can see . . .

Roughly 20% of the source files in Sage are written in Cython (which accounts
for about 30% of the code itself). We use Cython for several things:

Speeding up key algorithms,

interfacing with C/C++ libraries, and

avoiding the Python/C API (read: saving our sanity).

Making Sage source faster . . .

To really understand what’s taking time in Cython source, you often need to do
serious profiling or read the generated C source code. However, it’s easy to get
your hands on the annotated HTML file for any file in the Sage source tree.
You can simply do sage -cython -a on any file, and the annotated source will
appear right there:

[c r a i g c i t r o@ sh a rma ˜/ th ree−f ou r−two/ d e v e l / sage−main/ sage / r i n g s / po l ynom ia l]
$ l ∗ d e n s e f l i n t ∗
704 p o l y n o m i a l i n t e g e r d e n s e f l i n t . cpp

4 p o l y n o m i a l i n t e g e r d e n s e f l i n t . pxd
40 p o l y n o m i a l i n t e g e r d e n s e f l i n t . pyx

[c r a i g c i t r o@ sh a rma ˜/ th ree−f ou r−two/ d e v e l / sage−main/ sage / r i n g s / po l ynom ia l]
$ sa −cython −a p o l y n o m i a l i n t e g e r d e n s e f l i n t . pyx
[c r a i g c i t r o@ sh a rma ˜/ th ree−f ou r−two/ d e v e l / sage−main/ sage / r i n g s / po l ynom ia l]
$ l ∗ d e n s e f l i n t ∗
700 p o l y n o m i a l i n t e g e r d e n s e f l i n t . c
704 p o l y n o m i a l i n t e g e r d e n s e f l i n t . cpp
684 p o l y n o m i a l i n t e g e r d e n s e f l i n t . html

4 p o l y n o m i a l i n t e g e r d e n s e f l i n t . pxd
40 p o l y n o m i a l i n t e g e r d e n s e f l i n t . pyx

Using .pxi and .pxd files

For most uses .pxd files are in, .pxi files are out.

Use a .pxd file if you want to

Declare external functions from another library

Declare inline functions

Declare types

Use a .pxi file if you want to

Include generic templating code (e.g. polynomial template.pxi)

Include a chunk of code textually

Include a separate copy of the file in each module

Too much of Sage still uses .pxi files, because once upon a time, .pxds didn’t
do the job.

NumPy and Buffers

Last summer Dag Sverre Seljebotn did an awesome job of providing fast,
simple access to NumPy arrays, or anything else supporting the buffer interface.

fastnumpy.pyx

c impor t numpy

def sum(x) :
cd e f numpy . nda r r ay [i n t , ndim=1] a r r = x
cde f i n t i , s = 0
f o r i i n range (a r r . shape [0]) :

s += a r r [i]
r e t u r n s

This loop gets translated into pure C.

Improved C++

Some C++ niceties have been added:

Exception catching

(Non-pointer) functions in structs

fastnumpy.pyx

cde f e x t e r n from ” foo . cpp” :
c d e f s t r u c t Foo :

cd e f i n t foo () except +
cde f i n t a l l o c a t e () except +MemoryError

cd e f i n t r a i s e p y e r r o r ()
cd e f i n t someth ing dange rous () except +r a i s e p y e r r o r

More to come...

Complex Numbers

The next release of Cython will have complex number support.

With or without support from complex.h

mandelbrot.pyx

cde f e x t e r n from ”complex . h” :
doub l e cabs (doub l e complex)

cd e f b i n t i n mande l b r o t (doub l e complex c , i n t i t e r) :
c d e f i n t i
c d e f doub l e complex z = c
f o r i i n range (i t e r) :

z = z∗ z+c
i f cabs (z) > 2 :

r e t u r n Fa l s e
r e tu rn True

. . .

Embedding

An --embed option to create a main() method that embeds the interpreter.
One then compiles to create an executable.

standalone.pyx

i f name == ” ma in ” :
p r i n t ”Running j u s t l i k e a . py f i l e would . ”

p r i n t ” S t u f f here runs to . ”

Of course, you still have to link against Python.

Closures

We finally (almost) support closures.

The last major roadblock before 100% Python support

Generators, lambda, etc. are just essentially closures

closure.pyx

%cython
def remember (x) :

def f () :
r e t u r n x

r e t u r n f

sage : f = remember (3)
sage : f ()
3

Needs more testing!

Improvements

Many more improvements...

Newer temp allocation scheme

Utility code generation

Pure Python mode

import * and cimport *

isinstance(...) checks types for Extension classes

cdivision

Compiler directives

Better type conversions

Better errors, optimizations, boostrapping...

The Cython codebase is maturing enough to work on higher level stuff.

Wrapping C++

One can wrap C++ with Cython, but it’s kind of hackish:

Declare classes as structs

Use string substitution

Write a wrapper file

Wrapping C++

This will all change this summer thanks to Danilo Freitas and Google.

Wrapping C++

Danilo’s objective is to make Cython C++ aware enough to natively use STL.
If you can wrap STL, you can wrap just about anything...

Templates

Real C++ classes and inheritance

Function overloading

Operator overloading

Some of this may be also available in non-C++, non-extern code.

One of the biggest questions is how to provide Pythonic syntax for C++
constructs.

Proposed C++ Syntax

The code below is a proposal, suggestions welcome!

foo.pxd

cde f e x t e r n from ” foo . h” namespace Foo :

cd e f c p p c l a s s MyFoo [T] (MySuperClass) :
MyFoo [T] a d d (MyFoo [T] , i n t)
MyFoo [T] a d d (MyFoo [T] , MyFoo [T])
T g e t i t e m (MyFoo [T] , i n t)
vo i d s e t i t e m (MyFoo [T] , T, i n t)

We don’t necessarily have to construct a full model of C++, just enough to
pass it on to the C++ compiler.

Fortran Support

There is another GSoC project by Kurt Smith to provide Fortran support.

NumPy buffers aware

Automatically create C bindings

Use f2py to parse header files

...

Future

What’s in store for Cython in the long run?

100% python coverage and compatibility

Type inference

Control flow analysis

Header file parsing (auto .pxd generation)

Eventual inclusion into Python

???

Any questions?

Thanks for listening!

	Introduction
	Cython: The Project
	Cython and Sage

