
J. Guàrdia

(joint work with J. Montes & E. Nart)





Given K=(),    F(x) =Irr(,K, ),   n=degF

determine 1,…, n  

such that     K = < 1,…, n >.

Example:  K=(i),         K = <1,i>
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Index f:=[K :[]]

F(x)=x10000+... 29941 -1

F(x)=x2+210000310000

Disc(F(x))=Disc(K) ·f2

We must factor Disc(F(x))

K=(i)

Assume we can do it!



 For every  p| Disc(F(x)):

Compute a triangular p-integral basis of K, 

i.e. a (p) -basis of K(p)

 Glue all the local bases 

(with Chinese remainder theorem).



 Kummer-Dedekind

 Bauer-Ore

 Zassenhaus’ Round 2

 Zassenhaus’ Round 4

Factor mod p

Newton polygons

Enlarge p -radicals

p-adic Hensel lifting

(MAGMA, MAPLE, KANT)



 Montes-Nart (99)

 Ford-Pauli-Roblot (02)

 GMN (09)

Higher Newton polygons for 
prime ideal decomposition

Improved  Round 4

(PARI, SAGE)

Extended use of higher
Newton polygons





[K :[]][K :[]]

Round 2

Round 4

FPR

Montes

[K :[]]



K,p

p-integral basis of  K

Round 2, Round 4, FPR

Buchman-Lenstra

Montes



 Based on higher Newton polygons

 No Hensel lifting nor p-adic factorization required

 Main task: factorization of polynomials over finite fields

 Computes maximal order, index and prime 
ideal factorization

Low memory-requirements

 Excellent (heuristic) running time

 The computation of maximal orders relies on a conjecture 
that it is proven only in some cases, but:

 It checks the validity of the result by itself 
(with no extra cost)

 We have made thousands of tests, with no fail.



 www.ma4.upc.edu/~guardia/MontesAlgorithm.html
(Google: “Montes Algorithm”)

 Implemented in Magma 

 Includes routines to

 Compute p-maximal orders

 Compute  p-index
 Factor       formally (ramification indices and residuals degrees)
 Factor         completely  (generators of the prime ideals)
 Compute global maximal orders
 Build examples of polynomials of arbitrary order

 Use it for your big polynomials and/or send them to us.

http://www.ma4.upc.edu/~guardia/MontesAlgorithm.html






f k(x):=( x2+ x+1)2-p2k+1  p1(mod 3)

 Small degree

Medium index

Large coefficients







1. From to



p-integral basis of K





Fix 

escaping Dedekind’s criterion





p-integral basis of K:



Theorem of the product:

p-adic reciprocals

Theorem of the polygon

Theorem of the residual 

polynomial



Proposition:  Given

we can easily compute a monic irreducible

polynomial with

F is a representative of  the order one type





 Higher order types

 Higher valuations

 Higher Newton polygons

 Generalized theorems: 

◦ of the product

◦ of the polygon

◦ of the residual polynomial

 Finiteness results: control of the 
index

Recursive definitions and proofs!



A type of order r is

where



Theorem:  Given any type we can effectively construct

a monic irreducible polynomial r+1[x] such that:







Definition: 

The residual polynomial in order r+1 attached to S is:



 Theorems of the product, of the polygon, of the residual 
polynomial:

◦ If  has exponent 1, then                 (     is complete )
◦ Otherwise,                                 originate an extension 

of     :



 Every complete type     determines a prime factor      
of         .

N

N

RS

 Every prime    comes from a type.



ind(N):= number of points of integral coordinates “below” N.

ind(N)=25 



Theorem of the index

Let f [x] be a monic and separable polynomial.

a) vp(ind( f )) ind1( f )+...+indr( f ),      r1.

b) Equality holds if and only if indr+1( f )=0.



complete

Proven when: or

Test:  





 The running time of the algorithm is determined by the
highest order of the involved types.

 The enlargement of a type is somewhat arbitrary, but
Montes has designed a refinement process to :
◦ 1. Eat as much index as possible in every order

◦ 2. Assure that “ekfk”>1” grows in every order.

 The number of types and its length should be related to
the Galoisian structure of K.





 Detailed analysis of the complexity of the 
algorithm

 Improvement of the diagonalization process 
(specific  Gröbner basis computation).

 Implementation in Sage (requires 
factorization of polynomial over relative 
extensions of finite fields).


