
J. Guàrdia

(joint work with J. Montes & E. Nart)

Given K=(), F(x) =Irr(,K, ), n=degF

determine 1,…, n

such that K = < 1,…, n >.

Example: K=(i), K = <1,i>

H. Cohen
A course in Computational Algebraic Number Theory, GTM 138

h
ar

d
n
es

ss
Index f:=[K :[]]

F(x)=x10000+... 29941 -1

F(x)=x2+210000310000

Disc(F(x))=Disc(K) ·f2

We must factor Disc(F(x))

K=(i)

Assume we can do it!

 For every p| Disc(F(x)):

Compute a triangular p-integral basis of K,

i.e. a (p) -basis of K(p)

 Glue all the local bases

(with Chinese remainder theorem).

 Kummer-Dedekind

 Bauer-Ore

 Zassenhaus’ Round 2

 Zassenhaus’ Round 4

Factor mod p

Newton polygons

Enlarge p -radicals

p-adic Hensel lifting

(MAGMA, MAPLE, KANT)

 Montes-Nart (99)

 Ford-Pauli-Roblot (02)

 GMN (09)

Higher Newton polygons for
prime ideal decomposition

Improved Round 4

(PARI, SAGE)

Extended use of higher
Newton polygons

[K :[]][K :[]]

Round 2

Round 4

FPR

Montes

[K :[]]

K,p

p-integral basis of K

Round 2, Round 4, FPR

Buchman-Lenstra

Montes

 Based on higher Newton polygons

 No Hensel lifting nor p-adic factorization required

 Main task: factorization of polynomials over finite fields

 Computes maximal order, index and prime
ideal factorization

Low memory-requirements

 Excellent (heuristic) running time

 The computation of maximal orders relies on a conjecture
that it is proven only in some cases, but:

 It checks the validity of the result by itself
(with no extra cost)

 We have made thousands of tests, with no fail.

 www.ma4.upc.edu/~guardia/MontesAlgorithm.html
(Google: “Montes Algorithm”)

 Implemented in Magma

 Includes routines to

 Compute p-maximal orders

 Compute p-index
 Factor formally (ramification indices and residuals degrees)
 Factor completely (generators of the prime ideals)
 Compute global maximal orders
 Build examples of polynomials of arbitrary order

 Use it for your big polynomials and/or send them to us.

http://www.ma4.upc.edu/~guardia/MontesAlgorithm.html

f k(x):=(x2+ x+1)2-p2k+1 p1(mod 3)

 Small degree

Medium index

Large coefficients

1. From to

p-integral basis of K

Fix

escaping Dedekind’s criterion

p-integral basis of K:

Theorem of the product:

p-adic reciprocals

Theorem of the polygon

Theorem of the residual

polynomial

Proposition: Given

we can easily compute a monic irreducible

polynomial with

F is a representative of the order one type

 Higher order types

 Higher valuations

 Higher Newton polygons

 Generalized theorems:

◦ of the product

◦ of the polygon

◦ of the residual polynomial

 Finiteness results: control of the
index

Recursive definitions and proofs!

A type of order r is

where

Theorem: Given any type we can effectively construct

a monic irreducible polynomial r+1[x] such that:

Definition:

The residual polynomial in order r+1 attached to S is:

 Theorems of the product, of the polygon, of the residual
polynomial:

◦ If  has exponent 1, then (is complete)
◦ Otherwise, originate an extension

of :

 Every complete type determines a prime factor
of .

N

N

RS

 Every prime comes from a type.

ind(N):= number of points of integral coordinates “below” N.

ind(N)=25

Theorem of the index

Let f [x] be a monic and separable polynomial.

a) vp(ind(f)) ind1(f)+...+indr(f), r1.

b) Equality holds if and only if indr+1(f)=0.

complete

Proven when: or

Test:

 The running time of the algorithm is determined by the
highest order of the involved types.

 The enlargement of a type is somewhat arbitrary, but
Montes has designed a refinement process to :
◦ 1. Eat as much index as possible in every order

◦ 2. Assure that “ekfk”>1” grows in every order.

 The number of types and its length should be related to
the Galoisian structure of K.

 Detailed analysis of the complexity of the
algorithm

 Improvement of the diagonalization process
(specific Gröbner basis computation).

 Implementation in Sage (requires
factorization of polynomial over relative
extensions of finite fields).

