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Why ?

We focus on polynomial multiplication over F2[x].

This is used in many contexts:

polynomial factorization, irreducibility tests ;

(some) crypto applications ;

less obvious: sparse linear algebra over F2 ;

and more.
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How does data look like ?

Binary polynomial x3 + x2 + 1 → machine integer(1101)2 (“dense”).

up to degree 63: one machine word (64-bit).

degree 64 to 127: two words.

. . .

In hardware: add is trivial ;

mul is easy ; much easier than integer mul.

Not our business.

In software: add is trivial (xor) ;

mul is tedious (no PCMULQDQ yet !).
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What do we do ?

We are interested in:

software.

speed everywhere: from 64 to 232 coefficients (think recursion).
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Existing software
Existing software typically has:

Possibly fast multiplication for 1, 2 . . . up to a few words.

Karatsuba multiplication above.

Main reference: Victor Shoup’s NTL: shoup.net/ntl

Very rarely (if ever), one finds:

Code that takes advantage of CPU-specific instructions ;

Toom-Cook multiplication ;

Fast multiplication for unbalanced operands ;

FFT (Schönhage ternary + Cantor additive).

All of this is in the gf2x software package.
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It pays off !
Timings in seconds, Core2 2.4GHz
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It pays off !
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It pays off !
Timings in seconds, Core2 2.4GHz
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It pays off !
Timings in seconds, Core2 2.4GHz
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It pays off !
Timings in seconds, Core2 2.4GHz
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It pays off !
Timings in seconds, Core2 2.4GHz
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It pays off !
Timings in seconds, Core2 2.4GHz
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It pays off !
Timings in seconds, Core2 2.4GHz

0.0e+00

1.0e+00

2.0e+00

3.0e+00

4.0e+00

5.0e+00

6.0e+00

7.0e+00

8.0e+00

9.0e+00

 0  2e+06  4e+06  6e+06  8e+06  1e+07

ntl-5.5
ntl-5.5 + gf2x

deg a, b

Sage Days 16 – June 26th, 2009 – p. 6/29



It pays off !
Timings in seconds, Core2 2.4GHz
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It pays off !
Timings in seconds, Core2 2.4GHz
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It pays off !
Timings in seconds, Core2 2.4GHz
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Notations

Splitting of a polynomial a(x) in s-bit slices:

a(x) = A(x, xs),

A(x, t) = A0(x) + A1(x)t + A2(x)t2 + · · ·

and deg Ai < s.

Reconstruction: from A(x, t), compute a(x) = A(x, xs).

Only of notational interest ; “computationally, nothing happens”.
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Below degree 64: mul1
Classical: c = a × b computed with a (fixed-) window method.

Tabulate multiples g × b, for deg g < s (s = window size).

Split a = A0 + A1x
s + A2x

2s + · · · .

Accumulate c = A0 × b + (A1 × b)xs + (A2 × b)x2s + · · · .

Operations required: shifts, XORs.

For degree below 64, we work with machine words only.

For deg b = 63, the computation Ai × b overflows !

Necessary “repair” step is rather easy (see paper).
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mul1 (cont’d)
What is the best window size ?

Use trial and error. Typically 3 or 4.

64 × 64: ∼ 75 CPU cycles on Intel core2 and i7 ;
∼ 85 CPU cycles on AMD k8.

Note: This trivially extends to a routine for 64k × 64.
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Using SIMD capabilities
What about 128 × 128 ?

Karatsuba ⇒ three 64 × 64.

Schoolbook requires a × blow and a × bhigh ⇒ two 128 × 64.

BUT a × blow and a × bhigh can be computed in a SIMD-manner.

SIMD instructions on x86_64 provide the necessary shifts and XORs.

Accessible with compiler builtins (gcc, icc, MSVC).

Assembly is not an absolute necessity.

128 × 128: ∼ 129 Intel core2 cycles ;

∼ 226 AMD k8 cycles.

Faster than Karatsuba here.
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Medium sizes
Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication.
⇒ No branching.

Example for mul4:

mul2 (c, a, b);

mul2 (c + 4, a + 2, b + 2);

aa[0] = a[0] ^ a[2]; aa[1] = a[1] ^ a[3];

bb[0] = b[0] ^ b[2]; bb[1] = b[1] ^ b[3];

c24 = c[2] ^ c[4];

c35 = c[3] ^ c[5];

mul2 (ab, aa, bb);

c[2] = ab[0] ^ c[0] ^ c24; c[3] = ab[1] ^ c[1] ^ c35;

c[4] = ab[2] ^ c[6] ^ c24; c[5] = ab[3] ^ c[7] ^ c35;
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Medium sizes
Classical: from 2 to 9 machine words, hard-code Karatsuba multiplication.
⇒ No branching.

Cycle counts, Intel core2.

deg NTL LIDIA ZEN this paper

63 99 117 158 75

127 368 317 480 132

191 703 787 1 005 364

255 1 130 988 1 703 410

319 1 787 1 926 2 629 806

383 2 182 2 416 3 677 850

447 3 070 2 849 4 960 1 242

511 3 517 3 019 6 433 1 287
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What comes next ?

Toom-3: deg a < 3k, write a = A(x, xk), A(x, t) = a0(x) + a1(x)t + a2(x)t2.

Evaluate (A(x, xi))i=0,1,2,3,4 and (B(x, xi))i=0,1,2,3,4

Multiply: C(x, xi) = A(x, xi)B(x, xi).

Interpolate: recover C(x, t) from (C(x, xi))i=0,1,2,3,4

Misbelief: This is only for #K ≥ 4. . .

because we need 5 evaluation points (in P
1(K)).

We can use: 0, 1,∞, x, x−1 ; call this TC3.

Often better: 0, 1,∞, x64, x−64: avoids shifts ; call this TC3W.

The degrees in recursive calls increase mildly.
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Timings

1 + deg NTL gf2x method

1 536 0.008 0.004 TC3

4 096 0.033 0.017 K2

8 000 0.098 0.046 TC3W

10 240 0.160 0.080 TC3W

16 384 0.295 0.140 TC3W

24 576 0.567 0.240 TC3W

32 768 0.887 0.395 TC4

57 344 2.331 0.976 TC4

65 536 2.667 1.067 TC4

131 072 7.937 3.040 TC4

ms, Intel Core2 2.4GHz ; cycles:×2.4 · 106.
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Large sizes

We are also interested in multiplication in the FFT range.

Several options:

integer FFT and (huge) padding (Krönecker-Schönhage).

Schönhage’s ternary FFT algorithm.

Cantor’s additive FFT algorithm.

. . .
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Why is Krönecker’s trick inefficient here ?
Assume we know how to multiply (fast) in Z.

We use that in for multiplying in Fp[x].

If a(x) = a0 + a1x + · · · + aN−1x
N−1, and b(x) similar:

Choose B = 2k such that Np2 < 2k.

Form the integer ã = a0 + a1B + · · · . Same for b̃. We have:

ã · b̃ =
∑

ℓ

∑

i+j=ℓ

aibj

︸ ︷︷ ︸

c̃ℓ<Np2<B

Bℓ.

The coefficients of c = a × b are recovered with ci = c̃i mod p.

Cost: M
(
N log

(
Np2

))
, to be compared to M(N log p) (quasi-linearity w.r.t

input size). This is very expensive for p small.
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Other ways to do the FFT
Assume we are given one quotient ring R of F2[x] of degree d with

(reasonably) fast multiplication ;

fast multipoint evaluation and interpolation on some subset W .

Then we can use this to compute products in F2[x] up to 1

2
d.#W bits.

Split a and b in blocks of d
2

coefficients: a = A(x, xd/2). Map A to R[t].

Multi-evaluate A and B at W .

Compute pointwise products {A(w) · B(w), w ∈ W}.

Interpolate: recognize C such that ∀w ∈ W, C(w) = A(w) · B(w).
Note that C = AB as long as deg(AB) < #W .

Lift C to F2[x, t]. Recover ab = C(x, xd/2).
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Where to do the FFT ?

Several possibilities. Pitfall: W can not be a set of 2n-th roots of 1 !

Let R = F2k with 2k − 1 having a large smooth factor K.
Let W = {K-th roots of 1}.

Let R = F2[x]/x2L + xL + 1, where L = λ3k−1.
Then xλ generates W = {3k-th roots of 1}.

Let R = F
22k and W be a sub-vector space.

“Butterflies” go “3-way”.

x, y → x + αy, x − αy,

x, y, z → x + αy + α2z, x + jαy + j2α2z, x + j2αy + jαz.
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Where to do the FFT ?

Several possibilities. Pitfall: W can not be a set of 2n-th roots of 1 !

Let R = F2k with 2k − 1 having a large smooth factor K.
Let W = {K-th roots of 1}. not looked at.

Let R = F2[x]/x2L + xL + 1, where L = λ3k−1.
Then xλ generates W = {3k-th roots of 1}. ternary FFT.

Let R = F
22k and W be a sub-vector space. additive FFT.

“Butterflies” go “3-way”.

x, y → x + αy, x − αy,

x, y, z → x + αy + α2z, x + jαy + j2α2z, x + j2αy + jαz.
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Ternary FFT (Schönhage)

The ternary FFT achieves O(N log N log log N) complexity if one uses it
recursively also for the pointwise products, BUT:

This requires computing the pointwise products modulo X3L + 1.

One doesn’t have to. One top-level step gives already good results.

Have to choose a sensible value for K.

Sage Days 16 – June 26th, 2009 – p. 18/29



Ternary FFT (Schönhage)
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Splitting the ternary FFT

There is a (mild) staircase effect.

We can compute a product of degree < N by splitting:

Compute one product modulo N ′ > N/2.

Compute another product modulo N ′′ > N ′.

Very simple XORs do the reconstruction.
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Schönhage FFT + splitting
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Schönhage FFT + splitting
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Cantor’s additive FFT

A completely different approach. Use a field R = Fk = F
22k = F2[γ].

Which evaluation set W do we use ?

Let s1(x) = x2 + x, and si(x) = s1(s1(· · · s1
︸ ︷︷ ︸

i times

(x) · · · )).

si satisfies many properties:

si is sparse ; si is linear ; s2k = x22
k

+ x.

Let 2k ≥ i and Wi =
{
α ∈ F

22k | si(α) = 0
}

= Ker si.
Wi is a sub-vector space of F

22k ; dimWi = i.
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Multi-evaluation at Wi

Use a sub-product tree:

{f(α), α ∈ Wi} = {f mod (x + α), α ∈ Wi} .

s3(x)

s2(x)

s1(x)

x + 0 x + 1

s1(x) + 1

x + β2 x + β2 + 1

s2(x) + 1

s1(x) + β2

x + β3 x + β3 + 1

s1(x) + β2 + 1

x + β3 + β2 x + β3 + β2 + 1

right-child = 1 + left-child.

Only the constant coefficients are in extension fields.

sj is sparse, so reduction is cheap.
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Cantor: staircase effect
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A truncated variant

Evaluate at no more points than needed. Example for 6 points:

s3(x)

s2(x)

s1(x)

x + 0 x + 1

s1(x) + 1

x + β2 x + β2 + 1

s2(x) + 1

s1(x) + β2

x + β3 x + β3 + 1

s1(x) + β2 + 1

x + β3 + β2 x + β3 + β2 + 1

Work modulo s2(x) (s1(x) + β2) instead of s3(x).

Interpolation is tricky. Uses the sub-product tree twice. See paper.
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Performance of additive FFT
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Performance of additive FFT
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Comparison Cantor – Schönhage

 0 ms

 10 ms

 20 ms

 30 ms

 40 ms

 50 ms

 0 128000 256000 512000 640000

plain Cantor
truncated Cantor
Ternary FFT
Ternary FFT+split

Sage Days 16 – June 26th, 2009 – p. 27/29



Comparison Cantor – Schönhage

A word of caution:

Additive FFT has cheap pointwise products.

Ternary FFT has cheap evaluation / interpolation.

When transforms can be reused (matrices over F2[x]), additive FFT wins.
Example for deg ab < 220:

Additive FFT: 57 ms, 2.3 ms in pointwise mults.

Ternary FFT: 28 ms, 18 ms in pointwise mults.

n × n matrix mult: ceval/interp ∗ n2 + cpointwise ∗ n3

Additive FFT faster for 3 × 3 matrices and above.
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Conclusion

Significant speed-ups over existing software.

URL: gf2x.gforge.inria.fr (versions > 0.9 no longer have the
additive FFT, because not routinely tested).

Usable as an add-on to NTL 5.5: NTL_GF2X_LIB=<path>.

In the works: an update to expose the different steps of the transform, for
algorithms where caching transforms is desired.
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