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1. INTRODUCTION

It is well known that an Abelian variety X of dimension g defined over a
field % of characteristic p > 0 yields a p-divisible group X(p) of dimension g
and of height 2g. Let ' be the formal group obtained by expansion into power
series of the group law of X relative to some system of local parameters at the
origin. Then T is nothing but the connected p-divisible group in X(p) and T has
any height between g and 2g (cf. Tate [14]).

In the present paper, we confine ourselves to the study of the Jacobian variety
J(C) of a hyperelliptic curve C over a field of characteristic p > 2. Our aims
here are (i) to determine the structures of the p-divisible group J(p) and of the
formal group T of J(C) (up to isogeny) with the help of the Cartier-Manin
matrix A of C, and (ii) to investigate how much information about the algebraic
(global) structure of J(C) (up to isogeny) can be recovered from the formal
(local) structure.

We shall give a brief survey of the paper here. In Section 2, we define the
Cartier—-Manin matrix 4 of a hyperelliptic curve C over a perfect field of charac-
teristic p > 2 following Cartier [1] and Manin [8]. We then show that A4 coin-
cides with the Hasse~Witt matrix of C. Some basic but important properties of 4
are also discussed. After this, throughout the forthcoming sections, we assume
that k is a finite field with p? (@ >> 1) elements. In Section 3, we give a complete
characterization of the “ordinary” Jacobian variety J(C) of C. When J(C) is
ordinary, the Cartier—-Manin matrix 4 of C completely determines the formal
structure J(p), and in certain cases the algebraic structure as well (up to isogeny).
In the rest of the paper, we study the Jacobian variety J(C) of the hyperelliptic
curve C whose Cartier—Manin matrix has determinant zero in k. In Section 4,
we observe that the Cartier-Manin matrix 4 of C no longer provides enough
information; it is the p-adic exponents of the eigenvalues of the characteristic
polynomial of the Frobenius endomorphism of J(C) relative to k that determine

378

0021-8693/78/0522-0378$02.00/0

Copyright © 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.



JACOBIAN VARIETIES OF HYPERELLIPTIC CURVES 379

the isogeny class of J(p). In Section 5, we characterize the “supersingular’
Jacobian variety J(C) of C. It is shown that, in this case, the formal group of J(C)
completely determines the algebraic structure of J(C). We also show that the
condition 4 = (0) in k is sufficient but not necessary for J(C) to be super-
singular. In Section 6, we discuss the Jacobian variety J(C) whose formal
group I” is isogenous to the symmetric formal group of dimension g. Finally,
in Section 7, we consider the Jacobian variety J(C) with the formal structure
of the mixed type. It turns out that there is a k-simple Jacobian variety J(C)
with J(p) isogenous to the mixed type rGy,q + (¢ — 7)Gy,; - We remark here
that the Newton polygon R(P,) of the characteristic polynomial of the Frobenius
endomorphism 7 of J(C) relative to %, is a very useful tool for finding the local
decomposition of J(C) into isotypic (unfortunately not simple) components.

All formal groups and p-divisible groups discussed in this paper are
commutative.

This paper is the result of my attempt to understand Manin's works [6, 7].
In the present paper, we deal only with the hyperelliptic curves, but we shall
consider more general cases (algebraic curves) in the forthcoming paper [16].

2. THE CARTIER-MANIN MATRIX OF A HYPERELLIPTIC CURVE OVER A PERFECT
F1ELD oF CHARACTERISTIC p > 2

Let % be a perfect field of characteristic p > 2 and let C be a complete non-
singular curve over % defined by the equation

C:y* = f(x), M

where f(x) is a polynomial over & without multiple roots of degree 2¢ + 1.

Denote by K = k(x, y) the algebraic function field of C of one variable over k.
Then K has the unique subfield K? = k?(x?, y?) = k(x?, ¥?) over which K is
separably generated, e.g., K = K?(x) for a separably generating transcendental
element x € K — K?. Let Q%K) be the space of all differential forms of degree
1l on K and d: K— QYK) the canonical derivation of K. Since dx 5 0 for
a separating clement x, every element w e Q%K) can be expressed uniquely
in the form

w = d 4+ ? dxjx  with ¢, ye K, e K?. (2)

DerinTION 2.1.  Let £2'(K?) be the space of all differential forms of degree
1 on K? and d* : K? — Y(K?) the corresponding derivation of K? to d. We
define the Cartier operator € : QY(K) — £2Y(K?) by letting, for w given as (2),

(w) = pr(d7ar]a?).
%€ is a well-defined K?-linear operator and €(d¢) = 0.

481/52/2-7
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Sometimes it is convenient to use the following expression for w € QYK):
w = d¢ + nPa?2 dx with ¢, ne K, n?e K?, 2)

Dermnition 2.1'. The modified Cartier operator €' : QYK)— QYK) is
defined for w given as (2) by

€'(w) = 7 dx.

PropositioN 2.1.  The basic properties of the modified Cartier operator €' are
summarized as follows:

(@) €+ o) = ¥w) + €w).
(b) €'($*w) = ¢&'(w) for e K.
(c) €(¢"dd) = dd if n = p, and O otherwise, for ¢ € K.
(d) €'(w) =0 <« w = dp with some $ € K.
If this is the case, w s called exact.
(6) F'(w) = w < w = d|d with some ¢ c K.
If this is the case, w is called logarithmic.
Proof. They are immediately derived from the definition except (e). For (e)
see Cartier [1]. Q.E.D.

Now the differential forms of degree 1 and of the first kind on K form a
k-vector space, denoted, Dy(K), of dimension g with a system of the canonical
basis

x-1dx

g= w; =
Y

i= 1L, g%. G)

The images of the w;’s under the modified Cartier operator €’ are determined
in the following way due to Manin [8]. Rewrite w; as

x1 du ) oy
— x:—ly—pyp—l dx = y"’x"l Z cx! dx,
=0

w; =

where the coefficients ¢; € k are obtained from the expansion

(p-n/z_N j _P_lz
J(®) =Y el, N= 5 (2e + 1).
=0
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Then we get fori = 1,..., g,

. x(l+1)17 dx
w; =y ( 2}: i+l dx) + Zl Ca+Dw—i T X
i+i %0 (modp)
= = —_cjx_"__‘” L
_d(y ’ 2;, j+i)+;c(l+1)p-i N dx.
i+j #0 (modp)
Note here that
0<l<—]y—i—’——1 _ =22+ +: <g_1_
? P 2
Thus we have
= 1/ x?
' (w;) = Z €111 p—i —— d%.
=0 y

This shows that Dy(K) is closed under the modified Cartier operator €’. Thus
we can represent €’ by a matrix. Indeed, if we write w = (w, ,..., ®,), we have

€'(w) = AW,

where 4 is the (g X g) matrix with elements in % given as

Cpa1 Cpao 77 Cpgy
Cor v Como " Cor_
A= 27-1 29—2 2p—9
Cgp-1 Cgp-2 " Cgpg

(Correspondingly, under the Cartier operator €, we have

9-1 20D Joep
g w;) = c T
( ) lgo (141 yp x?
and hence
E(w) = Aw?.)

DrerFinNerioN 2.2. The matrix 4 obtained above is called the Cartier—Manin
matrix of the hyperelliptic curve C of genus g defined over k (with respect to
the canonical basis @ of Dy(K)). We denote it by H(C, w).

ProrositionN 2.2. The Cartier—Manin matrix A of C is determined up to
transformation of the form S AS-, where S = (s;;), si; €k is a (g X g) non-
singular matrix and S = (s)), independently of the choice of the basis of Oy(K).
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Proof. Let 8 = (6,,..., 8,) be any system of the first kind of differential
forms of degree 1 on K. Then there exists a (g X g) nonsingular matrix .S = (s;;)
with elements in % such that

g
Bi = Z Si,-wj (i == 1,..., g),
g=1
and there is 2 commutative diagram
© = (@ ,..., ®,) —E> H(C, 0)w?
Ky Sin
8 = (6, ..., 6,) —5> H(C, 8)6»
Hence 4 is transformed to S‘® AS-t. This shows that 4 is determined up to

transformation of the form S® AS-! independently of the choice of the basis
of Dy(K). Q.E.D.

THEOREM 2.1. Assume that k is algebraically closed. Let A = H(C, w) be the
Cartier-Manin matrix of the hyperelliptic curve C over k of genus g, with respect
to the canonical basis w of Dy(K) given as (3). Denote by a = Ya,,...,a,) a
g-column vector with elements in k and let us put

H = {awe DyK) | A AP -« AP =0}

and

G ={aweDyK)| 4 a? = a}.

Suppose that the matrix A AP - AP*™ has rank r. Then H is a k-vector
subspace of Oy(K) of dimension g — r and G generates a k-vector subspace [G]
of dimension r. Moreover, D(K) is isomorphic to a direct sum of H and [G].

Proof. Let us denote by
M = {a = Ya, ,..., 4;), a; € k for every i}

the set of all g-column vectors with elements in k. Then M becomes a X[%]-
module of rank g over k by defining the operation ¥a = A4 a? and €« = o*%
for a € k. Put

M1 — {aeM | @a — A AW .o 40" g0 — 0}

and

M,={acM|¥a = A a®* = a}.
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Suppose now that the matrix 4 A® --- 4%°™ has rank 7. Then it is easy to
see that M, is a k[€}-submodule of M of rank g — » over k. While M, itself is
not a k-module (because ¥(xa) = A(xa)® = oPA a? = o a # «a for « € k), but
it generates a k[%]-submodule [M,] of M of rank ¢, say over k. So there exists a
system of k-basis {a, ,..., a,} of [M,] which consists of the solutions of the equation
%a = A a? = a. Now an element Z:=1 o;a; € [M,)] is the solution of the equation
%a = a, if and only if B(X)_, %a;) = Y.y a;%a; = iy ;a;, if and only if «;
are elements of the prime field F, of characteristic p > 0. Therefore there are p?
solutions for 4 a? = a in M and we have

¢
Y %a;| o;eF,and a; € M2>.

i=1

[My] = <

It is easy to see that M, N [M,] = {0} and M 2D M, &P [M,].

Now we claim that ¢ = r = the rank of the matrix 4 A® -+ 4™ whence
M = M, @ [M,]. For this take an arbitrary element a, of M and let £[%]a,
be the principal module generated over & by a, , ¥a, , €7a,,.... kK[€]a, is finite
dimensional over &, say of rank g, , where g, is the degree of the minimal poly-
nomial P(X) of € over k:

P®) =B, 8" + = + & + - +B, =0, Bich

Then ay, %a,,..., €% la, constitute a system of k-basis for k[¢la,, with
& <&

Now we put M,° = {b € k[¥]a, | €9°b = 0}. Then M,’is a k[¥]-submodule
of k[%)a, of finite rank, say ¢, over k. Denote by [M,%] the k[#]-submodule of
K[¥)a, generated by the solutions of the equations ¥b = b in k[%]a,, with
finite rank, say s, over k. Then we have gy > #, + s, .

Suppose now that 8, is the coefficient of P(X) such that 8, == 0 for n, the
smallest index with this property. Put

$:A) = BA + BLA” + - - BEN, i =0,.., &
Then, % being algebraically closed, we see that
9600()‘) = Bgo)‘ + 1850—1)\1’ + -t Bz:o_”")\pg“_""

has p9—"e solutions in k. While, by noting that €8; = B,*€, we have

1—%) (z $:0) (ﬂ) + 0, () € = AP(¥) = 0.

=0

Hence we see that (1 — €)b = 0, i.e., €b = b has p%— solutions in k[%]a, .
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This implies that s, = g, — n, . This together with the inequality g, > s, -+ £,
gives n, > £, . On the other hand, we have
99—"ng
0 = P(¥) =€"0F) with Q%) = i;) B;ﬁﬁi%’.

Then Q(F)ay, €0(F)ay,..., €1 Q(¥)a, are linearly independent elements
of M°. So t, = n, . Therefore t; = n, and k[¥]a, = M,° ® [M,°].

a, being an arbitrary element of M and M, and [M,] being k[€]-modules,
the assertion ¢ = 7 follows from

ay € k[€la, = M, @ [M,"] C M, ® [M,].

The assertions of the theorem are immediately derived from the above
discussion. In fact, H (resp. G) is canonically isomorphic as a group to M,
(resp. M,) and H becomes a k-vector subspace of Dy(K) of dimension g — 7,
while G generates a k-vector subspace [G] of Dy(K) of dimension r. Q.E.D.

THEOREM 2.2. Assume that k is algebraically closed. Let G and r be as in
Theovem 2.1. Then G is canonically isomorphic to the group of classes of divisors
of order p of K. In other words, the number of divisor classes of order p of K
is precisely p.

Proof. By Artin—Schreier theory, a cyclic extension of K of degree p can be
obtained by adjoining a root -1z of the polynomial #X — z = 0, z€ K and
PX = X? — X. Put Z = K(#'z). Then Z is unramified over K, if and only
if Z is unramified at every place P of K, if and only if 2€Z K, for every P,
where K, denotes the completion of K at P, if and enly if 2 € Pk ((up)) for
every P, where k((up)) is the power series field over K in a local parameter u, ,
if and only if 2 U/#K where U = (\p(#Kp N K) (note that z e ZK <
Z = K). Furthermore, we have the following lemmas.

LemMa A. Let 3 € U/PK be as above. Then

g g
ze[] (,sﬂ (p y P,.) n gaK,,,)/k,

j=1 =1
where {Py ,..., P,} is a set of distinct k-rational points on C such that the divisor
39, P, is nonspecial and L (pYs_, P,) is the k-vector space of functions 0 # £ € K
such that the divisor (£) > —pi_, P; .

Proof of Lemma A. There exists a nonspecial system of points P;, 7 =
1,..., & on C,corresponding to the first kind differentials w; , ¢ = 1,..., g, in K in
the following way. Let 0 5% w, € Dy(K) and P, be a point which is not a zero of
@, . Now the Riemann-Roch theorem says that the space of the first kind
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differentials having zero at P, has dimension g — 1. Let 0 % w, € Dy(K) be in
it and let P, be a point which is not a zero of w, . Continuing this process g
times to get g points P, ,.., P, with the index of speciality i(35_; P;) =
I, P)—d3i_ P)—g+1=1—g-+g—1=0where ! = dimension

g
and d = degree of ¥ (2) P)).

i
Now if an element zeK is integral at P 4 P,;, i = 1,..., g, then a root a
of the polynomial f(X) = — X — z =0 is integral at the place P’ over

PinZ = K(«) (because vp- (oz) > 01if and only if vp(Normy g () == vp(—2) == 0).
So {1, «,..., P71} is an integral basis of Z at P. Moreover, « is unramified at P,
since the differential exponent is vp(f'(2)) = vp(—1) = 0. This shows that

g
7 (p Y Pi) NPKp, CU  for i=1,.,¢.

If e #(pY;., Py N PK, then there is X € K such that 2 = X? — X. Hence
X is integral for all P 54 P;, i = 1,..., g and at P;, X has a pole of order at
most 1. Thus X is constant and so is 2. So we have the injection

q
[]( (p y P) nQ’KP,)/k >—> UJPK.
j=1 =1
Finally, we want to show that for a given z € U, there exist (2 ,..., %,), 2; €
F(PTia P)NPK,, such that z=(z,...,2,) (modPK). Let zeU =
Ne (ZKp N K). Suppose that z is not integral at P 5= P;, ¢ = 1,..., g, then 2
has a pole at P of order pm with some positive integer m > 1 and = has a power
series expansion by a local parameter up as 2 = (a/ul™) (mod 1/ud™?) with
ack. Now by applying the Riemann-Roch theorem, there exists w, €
FL(mP +Yi_, P;) (whose dimension is 1 + m) such that w, = (a'/?/u;™) (mod
1/u~"). Hence we see that 2 = Pw; (mod 1/ut™") and 2 — Pw, has a pole
of smaller order than that of z at P. Repeating this procedure, we may assume,
without loss of generality, that z has poles only at P;, i = 1,...,, g. Hence
zePKp NK, j=1,..,g Now we must show that ze ¥ (p X5, P)). Since
2ePKp N K, z has an expansion of the form by the local parameter up, at
Pi:z= (a,/ug"") (mod 1/up) with some 1nteger m;>1 and a,¢ A
=1 for every j = I,..., g, then 2 L(pY;_, P,). If m; > 1, again by the
Rlemann—Roch theorem, there exists w; € #(m;P;) such that w; = (a}/” [up?)
(mod 1/uy" 1), Hence 2 — Pw;, has a pole of smaller order than that of z at P
Contlnumg this process, we finally get 2, % (p Y5, 2) NPK,_ for each
j = 1,..., g with the required property and hence z € £ (p 35_, P,). Q.E.D.

An immediate consequence of Lemma A is that we have

bi?

D
uP,- Py

8 =

2.) with b,ek for 7=1,.,¢.
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If we write u = (up, ey upp) and b = (b, ,..., b,), we have
b?
g=—

u

b
7 'u— (mOd uo).

LemMma B. [2,Staz 4). Let P;, i = 1,..., g be a nonspecial system of points
on C and up a local parameter at P; (taken as same as in Lemma A). Then there
extst functzons v, €L (pYe_ P),j = 1,.., g such that

i dis 0
v = —L mod up
! u}’;i uPl ( t)’
where e;; = 1 if ¢ = j and O otherwise and d;; € k. If we write v = (v ..., v,),

I = (&), and D = (d;;), we have
1 D
v = ';p— _— —ll— (mOd uo).

DeriniTION 2.3. The matrix D obtained in Lemma B is called the Hasse-
Witt matrix of the hyperelliptic curve C (cf. [2]).

Lemma C [2, Hauptstaz]. Let z be as in Lemma A and v as in Lemma B.
Then z (mod k) is in one-to-one correspondence with the vectors b = (b, ,..., b)),
b; € k for all i, satisfying D b? = b modulo multiplication by elements in the prime
field of characteristic p > 0.

Lemma D. The Hasse-Witt matrix D obtained in Lemma B is identified
with the Cartier—Manin matrix A. Moreover, the group

{b=(b,,..., b,), b€k for all i | Db? = b}
is canonically isomorphic to G in Theorem 2.1.

Proof of Lemma D. Let U be the space of adeles £ = (- ¢, --*) in K. For a
divisor X in K, we denote by (X) the k-vector space {£ € U l v,,(f) = —vp(X)
for all P}. Then we see that dim(W/(A(X) + K)) = the index of spec1ahty of X.
In particular, take X = Z=1 P; : the nonspecial divisor. Then ¥ = A(YF , P,) +
K and the factor space W/(U(0) + K)is generated by the adeles £, = (-~ 1/u, -+)
and (£, ,..., £,) is the canonical basis for A/(W(0) + K). The k-vector spzzces
D(K) and A/(A(0) + K) are dual and there is a pairing between them given
in the following fashion. Let W be the canonical divisor. Then there is a sequence
of k-vector spaces:
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.?(W—— 3 P,.)g.?(w—gfpi)g---gg(w_ 5 p,.)

i=1 i=1 i=1

Q,Sf(W— g P,.)g - C LW — P)C L(W)

i-1 j
with I(W— Y Pi) — l(W— > P,-) =L
i=1 i-1

Hence it follows from the choice of P; and from the Riemann—-Roch Theorem
that

-1 ;
wjeQ(ZPz)\Q(Z Pi) foreach 1 <{j<g,
i=1 i=1

where 2(X) = {w € QY(K)|(w) > X} and that (w, ,..., w,) is 2 dual basis to
(& v £5).

Now let S be the matrix of scalars (w;, £;) =: the residue of w;¢; at P;. We
may take S to be the (g X g) identity matrix by identifying the local parameters
up with x?/y for ¢ = 1,..., g (note that &%/ y, £ = 1,..., g can be local parameters,
since w; = (21 y)dx, i = 1,..., g are linearly independent). Hence we get

(@5 &%) = (Bws, £)7) = 4.

While we have for the functions v, , j = 1,..., g in Lemma B,
0) = ((wi> v3)) = ((wi5 &) — D((s, &) = 4 — D.

Hence 4 = D and the group {b = (b, ,..., b,), b;€k for all i satisfying D
b? = b} is canonically isomorphic to G. Q.ED.

Lemma E.  The number of classes of divisors of order p of K is precisely pr
where r is the rank of the matrix A AP - 40°7),

Proof of Lemma E. As an immediate consequence of Lemma D and of
Theorem 2.1, we know that there are p” solutions for the system of equations
D b? = b in k. Hence there are p™ divisor classes of order p of K. Q.E.D.

This completes the proof of Theorem 2.2. Q.E.D.
CoRrOLLARY 2.3. The notations and the hypothesis being as in Theorems 2.1
and 2.2, we have

(a) The following statements are equivalent:

(ai) r =g.
(aii) | 4AP - AP | 20,



388 NORIKO YUI

(aiit) A has rank g.
(aiv) Dy(K) does not posess any exact differentials.
(b) Al differentials of DK) are exact, if and only if A = (0). When this
is the case, A A -+ A% has rank 0 and there are no classes of divisors of
order p of K

Proof. (a) (ai) < (aii) <> (aiii) are clear, since determinant is multiplicative.
(ai) < (aiv). Suppose (ai), then Dy(K) = [G] and €6 = 6 for every 6 € Dy(K),
whence (aiv). The converse is clear.

(b) The equivalence follows from the definition of 4 and from Theorem
2.1. The last assertion is a trivial consequence of Theorem 2.2. Q.E.D.

3. ORrDINARY JAacoBIAN VaRriETY J(C) oF C

From here on, let k be a finite field of characteristic p > 2 with p* (a > 1)
elements and k its algebraic closure.

Let C be the hyperelliptic curve defined over k by the equation (1) and J(C)
its Jacobian variety. We may assume that J(C) and its canonical embedding
C — J(C) are also defined over k. Let = be the Frobenius endomorphism of
J(C) relative to k with the characteristic polynomial P,(}) € Z[A] of degree 2g.
P.(3) = ZZO aX', a, = p*, a,, = 1. P,(}) is the characteristic polynomial
of the I-adic and also of the p-adic representation of the Frobenius endomorphism
= and it is of special interest, because (1) it determines the isogeny class of J(C)
[13] and (2) the p-adic values of its characteristic roots determine the formal
structure of J(C)up to isogeny [6]. Thus P, () determines the formal and algebraic
structure of J(C) up to isogeny.

Henceforth, there remains the main task of determining P, (A) explicitly.
Its dependence on the Cartier-Manin matrix A of C has been illuminated by
Manin [7]. That is, P,(A) is linked to the Cartier-Manin matrix through the
congruence

PQ)=(—1¢X| A4, —A,| (modp), 4)

where | A, — M, | is the characteristic polynomial of the matrix 4, =
A A® -+ 4™ and I, is the (g X g) identity matrix.

TaeoreM 3.1. Let C be the hyperelliptic curve of genus g defined by (1) over k:
a finite field of p* (a > 1) elements, p > 2 and J(C) its Jacobian variety defined
over k. Let = be the Frobenius endomorphism of J(C) relative to k and P (}) its
characteristic polynomial. Then the following statements are equivalent:

i) [4.[+#0.
(i) A hasrank g, ie., | A| #0.
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(i) 4 AP - A% has rank g.

(iv) The p-rank of J(C) is g, that is, there are p° points on J(C) killed by
pink.

(v) P,(A) has g p-adic unit roots in the algebraic closure @, of Q, .

(vi) The Newton polygon W P,) has the segments S, , S, with slopes 0 and —a,
respectively, and looks like Fig. 1.

(vi1) The p-divisible group J(p) of J(C) is isogenous to gG, .
(viii) The formal group T of J(C) has height g and is isogenous to G, (p)?
where G, (p) denotes the multiplicative group of height 1 and of dimension 1.

ag 5, -
N(Py)
S, S, *y = —ax + ag

Sy

0 g 2q9

Ficurs 1

DreriniTioN 3.1, When J(C) satisfies any one of the conditions in Theorem
3.1, J(C) is called ordinary.

Remarks. (1) By the Newton polygon R(P,) of P,(A) = S aN e Z[A],
we mean the lower convex envelope of the set of points {(z, v,(,)) | i =0,..., 2¢} C
R X R where v, is the p-adic valuation of Q,, . (2) We denote by v, the unique
extension of the p-adic valuation v, to the algebraic closure @, of @, , normalized
so that v,(p) = 1. (3) The formal group I of J(C) is the connected component
of the p-divisible group J(p) of J(C).

Proof of Theorem 3.1. (i) <> (ii) <> (iii) and (v) <> (vi) are obvious.

(ili) <> (iv). Since the classes of divisors of order p of K correspond to
the points on J(C)(k) of order p, (iii) = (iv) follows from Corollary 2.3a and
(iv) = (iii) from Theorem 2.1 and 2.2.

(i) <> (v). By the Manin congruence (4), @, = (—1)¢ | 4, (mod p). Now
assume (i). Then v,(a,) = 0. Noting also that v,(a,,)} = 0, the Newton polygon
MN(P,) has a segment §; of length g and with slope 0. Therefore P,()) has
exactly g p-adic unit roots in @, , whence the assertion (v). Conversely, assume

(v) and let 7, ,..., 7, be the p-adic unit roots of P,(A). As P,(}) has always together
with roots 7, , the roots p®/r, , we have

g
P =IO —r)A—p%r), wy(r) =0 forall i=1,.,g
i=1

So v,(a,) = i, vy(r:) = 0. Hence again by the congruence (4), we get
| A, | == 0 (mod p). This proves (v) = (i).
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(vit) < (viii). Assume (vii). The p-divisible group G,, is isogenous to
Gn(p) X (Qp/Z,), where G,(p) is the multiplicative group of height 1 and
(@y/Z,)y, is the étale group of height 1. Hence J(p) ~ gGio = Gn(p)y X
(Q,/Z,)i . The assertion (viii) follows from the facts that the connected compo-
nent of J(p) is the formal group of J(C) and G,,(p)? is connected of height g.
The converse (viii) = (vii) is easy, because if J(p) has the component G, (p)’,
J(p) also has its dual (Q,/Z,)] as its component.

(v) <> (vii). First (v) = (vii) is the Manin fundamental theorem 4.1 in [6].
To show the converse, we consider the Dieudonné module 7,(J) = T,(G,.(p)") ®
T,((Q,/Z,);) corresponding to the p-divisible group J(p). Since P,(A) is the
characteristic polynomial of the p-adic representation T',(w) of the Frobenius
endomorphism 7 of J(C) on T'y(J), we may write P,(A) = P,(}) Py(A) where
P,(A) (resp. Py(A)) is the characteristic polynomial of the restriction of T,(r)
to T (G (p)°) (resp. to T,((Q,/Z,);)). Both P,(A) and Py(A) have the same degree
g. Moreover, we have

g
PO=T]QA=r) vwr) =0 forall i=1,.,¢
i=1

In fact, (Q,/Z,); being étale, T () induces an automorphism of T,((Q,/Z,))%)
and hence all the characteristic roots of Py(A) must have the p-adic value 0.
Q.E.D.

THeOREM 3.2. With the notation as in Theorem 3.1, suppose that J(C) is
elementary and ordinary. Then we have

(@) P,(}) is Q-irreducible.

(b) The endomorphism algebra o/ = End(J(C)) ® O is commutative and
cotncides with its center ® = Q(w).

(c) @ = Q(n) is a CM-field of degree 2g. Let B = 7 + 7 where 7 denotes
the complex conjugate of w. Then B is totally real and [Q(7) : Q] =g and | B <
2p°2, (B, p) == 1, and P,(}) = X2 — BA -+ p% e Q(B)[A]-

(d) J(C) is k-simple.

Proof. It is well known that if J(C) is elementary, P,(A) = P(\)¢ for some
integer ¢ with P(A) Q-irreducible and P(7) = 0 and that & is a division algebra
of dimension e? over its center @ = Q(=).

Now suppose that J(C) is elementary and ordinary. Then by Theorem 3.1,
P_(}) has the p-adic decomposition

g
P =[] A — )X — p2ra), vy(rs) = 0 forevery 1 <<i<Cg.
=1
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Hence at every prime v over p in @, ord,(7) = 0 or 4. Thus the local invariant
i, of o/ at v (defined by Tate [13] as 4, = ord, (=) - f,/a where f, is the residue
degree at v) is an integer for every v over p. Noting that there are no real primes,
(because if = is real, 7 = 42 and ord(w) = a/2), we see that the least
common denominator of all the , is 1. Since e is the period of 7 in the Brauer
group of @ and so is the least common denominator of all the i, , we get e = 1,
whence the assertions (a), (b), and (d).

Now we shall prove (c). Since = is imaginary with deg(w) = 2g, Q(=) is a
CM-field of degree 2g. Put B = 7 -+ 7. In every embedding @ = Q(#) into C,
| 7| = p*? by the Riemann hypothesis, so B = = -+ p%n is real and Q(B)
becomes totally real with [Q(B) : Q] = ¢ and Q(=) becomes imaginary over it
(i.e., 7 satisfies the equation P, (7)) = n* — Br + p* = 0 over Q(B)). As J(C)
is ordinary by the hypothesis, P,(A) must split. Hence at every prime v over p,
we have ord,(B) = 0, whence (8, p) = 1. Q.E.D.

Exampie 3.3. Consider the curve C:y? = 1 — &® defined over the prime
field F, where p is a prime of the form 10n - 1, e N. C has genus 2 and the
Cartier—-Manin matrix 4 of C is given by

L [Goye o
—1
o GHohs)

with (:) binomial coefficient.

It is easy to see that | 4| 40 in F,. So J(C) is ordinary by Theorem 3.1.
We have

Py =2~ (P8 4 (P TN R a2 (mod .

So P,(A) must split with roots of orders 0 and 1. Hence half the places have
ord(m) = 0 and the other half have ord,(7) = 1. So 7, is an integer for every
prime » over p, and hence J(C) is simple over [, .

This is a rather special example (cf. Honda [3]). Let  be the endomorphism
of J(C) corresponding to the birational automorphism (x, ¥) — ({x, y) of C.
PutL = Q(Z). ThenL is the decomposition field of p = 10n + 1 with [L : Q]=4
and moreover L = Q(w). Since &7 contains a field L of degree 4, J(C) is isoge-
nous to a product of a simple abelian variety. But p splits in @ and the local
invariants of & are all integers. Hence & = @ = L = Q({). This shows that
for all primes p of the form 107 + 1, ne N, J(C) are of the same CM-type (L)

and hence are isogenous to each other.
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4. THE JacoBiaN Variery J(C) or C witH | A | =0

THEOREM 4.1. With the notation as in Section 3, suppose that the Cartier—
Manin matrix A of C has the determinant | A | = 0 in k. Then we have (a) If the
matrix A A® -~ A" has rank 0, then the matrix A A® -+ 4™ glso
has rank 0.

(b) When (a) is the case, the following statements are equivalent:
(bi) The p-rank of J(C) is 0, that is, there are no points on J(C)
defined over k, killed by p.
(bii) The characteristic polynomial P,(X) has the p-adic decomposition
PQ) =TT (A — 7)) with 0 < wy(r)) < a.
(biii) The formal group T of J(C) has height 2g and coincides with the
p-divisible group J(p) of J(C).
Proof. (a) Let I>1 be an integer and let us denote by p; the rank of the
matrix 4, = A A® - A%'™ and 4, = I,.

Suppose now that A, = 4 A" - A% has rank 0. If a < g, there is
nothing to prove. So we assume now that @ > g. Let R; be the k-vector space
of the roots of the system of equations ¥'x = 0 in &k, ie., R, = {x|€'x =
Ax? =0}, R, = {0} and R, = H (in Theorem 2.1). We know that the rank
of R; is g — p; . First we shall prove the following lemma.

LevMMA. Put 8, = p;_y — p; - Then 8, is the rank of the k-vector space RyJR,_,
and

8,282 28,28,,="=8,=0 forany n=g+ 1.
Proof of Lemma. 1t is easily seen that R,D R;_; and &, =(g —p;) — (g — p11)
is the rank of the space Ry/R; , . Let uj?,..., ug?) be a basis of R,/R,_, . Applying|
the Cartier operator €, we get

(
Fu?,..., ‘Kuf{) €R,_,,

and modulo R,_, , they are linearly independent. Hence we get the inequality
8, -+ g — py_e < g — py_1, whence §,_; > §, . Continuing the same discussion,

we have 8§, = 8, > - = §, . It remains to show that §, > §,,; = - =3, = 0.
But this is an immediate consequence of Theorem 2.1, because R, = R, for
everyn =g+ 1. Q.E.D.

Now we shall prove the theorem. The assertion (a) follows immediately
from the lemma. In fact, take n = @, then p, = 0 by the hypothesis and p, =

Posr = " == pg = 0.
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(b) We shall prove (a) = (bi) = (bii) = (biii) = (bi).
(a) = (bi). See Corollary 2.3 b.

(bi) = (bii). We first note that the p-rank of J(C) coincides with the
rank of the toroidal component G, , of J(p). As we have seen in the proof of
Theorem 3.1(v) <~ (vii), the characteristic roots of P,(A) corresponding to the
toroidal component have the p-adic values 0 and a. Now assume (bi). Then (bii)
follows from the above fact and from the Riemann hypothesis that all the charac-
teristic roots must have the absolute value p#/2.

(bii) = (biii). Assume (bii). Then by the Manin theorem 4.1 in [6],
the p-divisible group J(p) of J(C) has no toroidal component. So J(p) is con-
nected. Hence the formal group T of J(C) has height 2¢ and coincides with the
p-divisible group J(p).

(biii) = (bi). 'This is a trivial consequence of the fact that the p-rank
of J(C)is equal to the rank of the toroidal component of J(p). Q.E.D.

Remarks 4.2. (1) The Cartier-Manin matrix A4 of C in Theorem 4.1
provides us merely a connected p-divisible group of height 2g. So in order to
determine the local structure of J(C) up to isogeny, we must classify the con-
nected p-divisible groups of height 2¢ into isogeny classes. Manin [6] is the
first to observe that the local decomposition of J(C) parallels the p-adic factoriza-
tion of the characteristic polynomial P, (2) of =.

(2) Let 2s (resp.7) be the number of the p-adic roots =, of P,(A) with
vy(r;) = af2 (resp. 0). Then we can factor P,(A) into the form

P,
28 T g—s—r
= I == [T Q=m)d—p%)- [ Q= 7)Q —pom).
v,,(‘rz;_)_iaﬂ VN::}=0 0<v,€:}<a/2

(Note that J(p) is connected, if and only if r == 0.)

In the forthcoming sections, we shall determine, up to isogeny, the type of the
formal group T, of the p-divisible group J(p) and then the algebraic structure of
J(C) up to isogeny, in the cases, [s = g, =0}, [s = 0,7 =0],and [0 <5 <pg,
0 <r < g], respectively.

(3) In principle, the characteristic polynomial P,(A) can be explicitly
determined by making use of the well-known Lefsechtz formulas for the hyper-
elliptic curve C over & (cf. [5]).
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5. SUPERSINGULAR JacoBIAN Variery J(C) oF C

TreEOREM 5.1. Suppose that the Cartier—Manin matrix A of C has the deter-
minant | A | = 0 in k and that the matrix A, has rank 0. Then we have

(@) The following statements are equivalent:
(al) s == g, i.e, all the characteristic roots of P,(A) have the p-adic value a|2.

(ail) The Newton polygon N(P,) has only one nonvertical segment with
slope —a[2 and looks like Fig. 2.

a
e 2(Py) a
S:*y=-5x+ag

[¢] 29

FiGure 2

(b) When (a) is the case, the p-divisible group J(p) of J(C) is isogenous to
&G, 1 and so is the formal group T of J(C).
(c) The following statements are equivalent:
(ci) The p-divisible group J(p) of J(C) has the isogeny type gG, ; .
(cii) The Newton polygon of the characteristic polynomial of =™ for some
integer n > 1 has only one nonvertical segment with slope —an/[2.

DerFiNiTION 5.1. When J(C) has the p-divisible group J(p) isogenous to
gG,.1, J(C) is called supersingular.

Proof of Theorem 5.1. (a) (ai) = (aii). By the hypothesis,

29 29
P (A) = ]_[ A—7) = Z a\.
i=1 =0
vplr;)=a/2

So we have v,(a;) = (2g — 1) a/2 for every 0 <7 < 2g. Hence the equation for
the nonvertical segment of N(P,) is given by y = —(a/2)x -+ ag.
(aii) = (ai). Clear.
(b) This follows from the Manin theorem 4.1 in [6], and Theorem 4.1b.
(c) First note that over any finite extension %, of & of degree n>1,
there exists an Abelian variety B, of dimension g whose all the characteristic
roots of the Frobenius endomorphism relative to &, have the p-adic value anf2.

(For example, B, = E? where E is an elliptic curve with vanishing Hasse
invariant.) Then by Manin's Theorem 4.1 in [6], B, has the p-divisible group
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B,(p) isogenous to gG, ;. There is a one-to-one correspondence due to Tate
(see Waterhouse [15]) and to Manin:

Homy, (J(C), B,) ® Z, <> Homy, (J(p), Bu(2))-

(ci) = (cii) Now suppose (ci). Then there exists an element ¢(p)
Hom, (J(2), Ba(#)) C Homg(¢Gy 1, 8G1x) — Ende(gGy) =~ M,(End(G;.))
(M, denotes the (g X g) matrix algebra.) By the above correspondence, we get
the element ¢ e Homy (J(C), B,). Hence the characteristic polynomial of
73y = 7" coincides with that of the Frobenius endomorphism 7y, of B,
relative to k,, . Therefore the p-adic exponents of the eigenvalues of 7™ are an/2.
Thus (cii) follows from by applying the argument (ai) = (aii) with =" for .

(cii) = (ci). Suppose (cii). Then there are 2¢ characteristic roots with
p-adic value an/2. Hence by applying the Manin Theorem 4.1 in [6] with &,
for k and #* for m, the p-divisible group J(p) of J(C) is isogenous to gG, ;.

Q.E.D.

Tueorem 5.2. A supersingular Jacobian variety J(C) of C over k is isogenous
over some finite extension of k to a product E X - X E (g copies)of a supersingular
elliptic curve E (cf. Oort [9]).

Proof. Recall that an elliptic curve is called supersingular if its endomorphism
algebra is noncommutative. We employ the same notation as in Theorem 3.2:
&/ the endomorphism algebra of J(C) and @ = Q(n) the center of /. The
algebraic integer = satisfying the Riemann hypothesis | 77 | = p3/2 in all embed-
ding of @ into C, are called the Weil numbers. As the notation suggests, we may
identify the Frobenius endomorphism with a Weil number.

Now by the assumption, all the characteristic roots of P,(A) have the p-adic
value a/2.

I. Suppose that there are real primes in @.

Case la. If a is even, # = +p/? is rational. Hence @ = Q, P,(}) =
(A Lpo), [ Q] = (2¢)% and o = M0, ) :a(g X g) matrix algebra
over the quaternion algebra Q, ., over Q which is ramified only at p and co.
Then by Tate [13], J(C) is isogenous over k& to g copies of a supersingular
elliptic curve over %, all of whose endomorphisms are defined over % and whose
characteristic polynomial is (A 4 p®/%)%.

CaseIb. If a is odd, = = L+ p*/? ¢ Q, but 72 becomes rational. We have
D = Q(p*7?), [@ : Q] = 2. So there are two infinite primes with local invariants
%4, and only one prime over p with local invariant 0. Thus the least common
denominator of all the local invariants is 2. Hence we obtain a k-simple con-
stituent X of J(C) with dim X = } -2 - deg(w) = 2. Passing to the quadratic
extension k, of &, we have Q(#?) = Q and X becomes isogenous to the product

481/52/2-8



306 NORIKO YUI

of a supersingular elliptic curve. Hence by applying the same argument as in
Case Ia, the algebra o/® attached to J(C) relative to %, becomes a matrix
algebra over Q,, ., and the characteristic polynomial of #? is given by P_»() =
(A — p%*. Hence J(C) is isogenous over k, to g copies of a supersingular
elliptic curve over &, .

II. Suppose now that there are no real primes in @. So Q(=) is totally
imaginary. Put 8 = 7 + p%/m. Then 8 is real and Q(8) becomes totally real and
Q(m) is imaginary quadratic over it. We can write P,(A) = A2 — BA + po¢c
Q(A)[A] with | B| < 2pa/2. The solution of P,(A) = 0 is a Weil number. Now
the hypothesis that all the characteristic roots of P,(A\) = 0 have the p-adic
value a/2 implies that (8, p) # 1 and hence p ramifies or stays prime in Q(B).
Write B8 = +4pP« with @ and o« = 0 or an algebraic integer satisfying
(Norm(a), p) = 1.

CaseIla. If o =0, then 8 = 0 and Q(8) = Q, Q=) = Q((—p*)/?) with
[Q() : Q] = 2. Hence we get Weil numbers = = 4-p%/2 - / "—1, whose second
powers become rational. So if @ is odd or a is even and p == 1 (mod 4), they give
supersingular elliptic curves whose all endomorphisms are not defined over %,
but are defined over k, . Hence the characteristic polynomial of #? is given by
P(A) = (A + p)%, and hence J(C) is isogenous over &, to g copies of a super-
singular elliptic curve over £, .

Case IIb. If «5£0and 2b < a, then we have 7= +(pPx - p°(a? — 4p*—20)1/2)/2,
Since o — 4p*2° = o? (mmod 4p), we have v,(m) = b < a/2. But this contradicts
to our hypothesis. So we can suppose that 2b > a. As B — 4p* =
(PP %2 — 4) < 0 and p 5= 2, we must have | p>—2/2 | << 2. So it follows that
m o= R p(pte o« i | pPte? — 4 122 with  Norm((p*-%/2a L+
1| pP-aa? — 4 {1/2)/2) = 1. Hence v,(7) = af2. Since | p*~%/2a | <C 2, we have
| pP42a)2 | << 1and | p?—%2 — 4 [}/2/2 < 1. Hence(p*—*/%a 1] pP%2 —4[1/2)/2
is a root of unity. Therefore some powers of = becomes rational, say =t =
+pt*2 e Q. So if a is even (resp. odd), the characteristic polynomial of =*
(resp. w2t) is given by P,{(A) = (A 4= p'e/%)* (resp. P,2(d) = (A & p*)%), whence
J(C) is isogenous over the extension k; of degree ¢ (resp. ky; of degree 2f) of &
to g copies of a supersingular elliptic curve over &, (resp. &y;).

A typical example of Case IIb is when the characteristic polynomial P,()
of 7 of J(C) relative to k is given by P, (A) = A% - pos. Q.ED.

It is a classical result that an elliptic curve E over k is supersingular if and
only if the Hasse invariant of E is zero. In the following, we shall give a gene-
ralization of this fact to higher-dimensional cases.

THEOREM 5.3. Suppose that the Cartier-Manin matrix A of C is (0) in k.
Then J(C) is supersingular and is isogenous over some finite extension of k to g
copies of a supersingular elliptic curve.
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Proof. A = (0) certainly satisfies the hypothesis of Theorem 4.1(a), so
that J(p) has no toroidal components <= J(C) has no p-torsion points <~ The
Tate group of the dual of J(C)is 0. First we shall prove the following two lemmas.

LemMa A. Let F be the Frobenius morphism of K = k(x, y) onto K? =
E2(x?, y?), J(C) onto J(C)? and J(p) onto J(p)'¥) induced by the pth power map
a—a® of k and F' =V its dual morphism. Then for the canonical basis w =
(@ ooy @y} of D(K) (==Dy(J(C))) given as (3), we have

E'w=wol = Al/P ¢, Cw = woF = Aw?.

Proof of Lemma A. Let O be the ring of integers in the absolutely unramified
extension L of Q,, with residue field 2 = F,. . So p generates the maximal ideal
of ©. We can lift the equation for C to L, which we write C : 3> = f(x) where f
is a polynomial over O without multiple roots of degree 2g -+ 1 such that C
modp = C. Let t; = x*/y, i = 1,..., g and t = (¢ ,..., {;). As we have seen in
Section 2, t is a system of local parameters of C at the origin and the canonical
basis w; , 7 = 1,..., g of Dy(K) can be written as

g dx
w; =dé; + Y cpiti® =’ $;e K.
=1

Now the differential forms of degree 1 and of the first kind on the algebraic
function field of € can have the form

o g d
(;)i = d¢1 + Z Elp—itlp —xf With (I)i modp = w; fOr i == 1,..., g.
=1

Let £ = (I), i = 1,..., g be the formal group of J(C) with respect to the local
parameters t, so that  mod p = I'. We consider the isogeny of I' (resp. ') of
multiplication by p. On T = (I)) over O, there exist systems of power series
O(t) = (01), W(t) = (W(t)) in O[[t]] such that

W) =1+,
to(plg) = pW(t) + O(t).
So by reducing modulo p, we get
to(ply) = U(t?) = (Uft?), where U = U mod p.

Now we know that in characteristic p > 0, the multiplication by p can be
expressed as the product of F and V taken in either order: ply =FV = VF
(cf. Manin [6, Proposition 1.4]). So we have

toF =17, tol = to(pl/F)= (byt,.., b,t),
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where b;t = Y7 , b,;t, with by, the coefficient of #,* in U,(t?). Expanding &;
into power series of t = (#;,...,{;), we have

g g
&; =y, dta; + - + Erpity ) = Y () dty,
I=1 =1
where &;; = 1 (mod p) for all 7, I. So it follows that
g o~
@; 0 (ply) = p@d; = Y, phi(ty) dt, .
=1
On the other hand, we also have
g -~
@0 (ply) =) R (O6°) + pWit) - (O/@°) pt7 ™ + pW/ (1)) dt, .
=1
Hence we get the equality
g g
Y () dt, = Y (U7 + pWt)) - (U/(&°) 77 + Wiy)) dt, .
1=1 =1

Read it modulo p and compare the coefficients of t!~* of both sides for each
I =1,.., g Since

(U {t,7) + pWit)) = h{U(5?)) = 1 (mod p),
and
Ui (t?) = bu,

we get ¢;,_; = b;; for i, I = 1,..., g. This proves that
g
%Iwi = Z L‘lljl,’_’,-wl = w;° V.
=1
By duality, we also get

g
%w'. = Z Clp—iwlp = wy oI, Q.E.D.

i=1

Lemma B.  The hypothesis and the notation are as in Theorem 5.3 and Lemma A.
Then plycy = ply, F and V are purely inseparable and moreover, we have

F? = V%= —plye -

Proof of Lemma B. Since J(C) has no points of order p in &, pl,(c) is purely
inseparable of degree p* (cf. [12, Chap. I, Proposition 7]). According to Serre
[11], every purely inseparable isogeny is the product of elementary isogenies of
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height 1, of one of two types 7, , 7, defined as follows. Let : be the p-Lie
algebra of differentiations of J(C). The isogeny of type #; corresponds to the
subspace {0 € M | 97 = 0} of M and that of type 7, to the subspace {0 e N | 07 = 7}
of N. The dual (or the transpose) of type 7, is again of type 7, and has kernel 0,
while that of type 7, becomes separable and has kernel of order p. Since the
Cartier-Manin matrix 4 of C is the matrix of the map ¢ - 2 in R, 4 = (0)
implies that V is the g product of the isogenies of type 7, . So it is purely in-
separable of degree p?. It follows that F is also the g product of the dual of the
isogenies of type 7; . Hence F is also purely inseparable of degree p?. Therefore,
F2, 172, and p1 () are purely inseparable of degree p% and they differ only by an
automorphism. Let ¢ be an automorphism of K (modulo translation auto-
morphism). ¢ has the form: x° = ex, y° = ny where ¢, 7 roots of unity (cf.
[10]). It has the matrix representation M(c) of degree g with respect to the
canonical basis w;, 7 = 1,..., g of D(K):

(@0erey %) = M(0)(y yorr, @,).

M(c) can be put into the form

0 €
where ¢; roots of unity. In particular, the hyperelliptic automorphism is re-
presented by the matrix

Now if 4 = (0), then w;, ¢ = 1,..., g are given by

g+i . —1
wi=d(yr Y g-—), o<j<ET @+

jrioimoay J T 1

Under the automorphism o, w; is transformed to

- xj+’i
we =d{y P €, ——1.
( i+isé0;modm Tt )
But the identity w,” = e,w, for ¢ = 1,..., g must hold. Thus the only possibility
iswhenn = 41 and e = 1, whence ¢; = 41 for every i. Thus all the nontrivial
automorphisms have order 2. Hence we have F2 = —pl ;) and V2 = p?[F2 =

—plye - Q.ED.
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The end of the proof of Theorem 5.3. m = F°, o’ = p*/F%are purely inseparable
isogenies of J(C). The characteristic polynomial of #? is given by P,:(A) =
(A 4 p%)%. Hence v,(7) = a/2 and J(p) ~gG, . Thus J(C) is supersingular
by Theorem 5.1. Q.E.D.

ExampLE 54. A = (0) is a sufficient condition for J(C) to be super-
singular, but it is not a necessary one. We shall illustrate some examples that
J(C) with 4 + (0) becomes supersingular.

Let C be the hyperelliptic curve of genus 3 with the equation y* = 1 — &7
defined over the prime field F, of characteristic p > 2. The Cartier-Manin
matrix 4 of Cis given by 4 = (¢, n)m.n=1.2.3 » Where

Cmn = ((Snj;__l,z)/f7) (=D with e, , =0 if T+mp—n.

Let ¢ be a primitive seventh root of unity and put L = Q({). So [L : Q] = 6.
Now for any prime p 5% 7, there exists the smallest positive integer f such that
p? =1 (mod 7) and fr’ = 6 where 7’ is the degree (over Q) of the decomposition
field K, of p.

Case I. If p=3 or 5 (mod7), then p =1 (mod 7), so f =6, r' = 1.

Hence p stays prime in L. For primes p = 3 (mod 7), the Cartier-Manin matrix
A of C has the form

_ ((p— 12y »-3)/7
1,3 = ((P o 3)/7) (_1)( V ’

~(=D2Y e = i
€39 = ((3P _ 2)/7) (— 1277, and ¢, = 0, otherwise.

For primes p = 5 (mod 7), the Cartier—Manin matrix 4 of C has the form

(p—1)J2y, 20-9)/7
‘23 = ((2p ~ 3)/7) (=D&,

€1 = ( (gi :11))//27) - (—1)Be-0r7) and ¢m.n = 0, otherwise.

In both cases, | A| = 0and 4 # (0), 4 AP = (0), but 4 AP A" = (0).
Case II. If p=6 (mod7), we have p2 =1 (mod7), so f=2, r' = 3.

Hence p decomposes in the real cubic field Ky = Q({ -+ {1). In this case, the
Cartier-Manin matrix 4 of Cis 4 = (0).
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Now let = be the pth power endomorphism of J(C) relative to F,. Then
7’ € K, and the characteristic polynomial of =7 is given as follows:

P, =@A+p% if Casel,
= A+ p)® if CaseIl.

(Cf. Honda [3].) Hence J(p) is isogenous to 3G;; in both cases. In Case 1
(resp. Case II), J(C) is isogenous over the extension of [, of degree 6 (resp.
over the quadratic extension of F,) to 3 copies of a supersingular elliptic curve.

6. Tue JacoBIAN Variery J(C) oF C WITH THE SYMMETRIC ForRMAL GRoUP

Turorem 6.1. Suppose that the Cartier—Manin matrix A of C has the
determinant | A| = 0 in k and that the matrix A, = A A® -+ A%°™ has rank
0. Then we have

(a) The following statements are equivalent:
(a) s =0 and P,()) = [Tis (A — )X — p°/r;) with 7; simple roots,
and v,(1;) = ac, 0 < ¢ < } for every 1 <<i < g.
(ail) P,(A) = Z?io aXt is a distinguished polynomial over Z, and the
coefficients a; satisfy the conditions:
vp(as) _ V5(45) —_ n,

M : — M
o<i<hs a(2g — 1) ag T et my’

where n,, m, are positive integers such that 1 <n, <m,, (n,, my) =1, and
n, + m, = g.

(aiil) The p-divisible group J(p) of J(C) is isogenous to G, ,, + Gy 1,
where n, , m, are integers such that 1 <n, <m,, (n,,m;) =1, andn,+m, =g
and so is the formal group T of J(C).

(b) When (a) is the case, the Newton polygon W(P,) of P(X) has two segments
Sy, S, indexed from the right with slopes —ac, —a(l — c), respectively. The
vertices of M(P,) are (28, 0), (g, v,(a,)), and (0, ag) and it looks like Fig. 3.

S, ¢y =—aéx + 2acg

Sz ¢+ y = —a{l-¢c)x + ag

FiGure 3
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(c) If the Newton polygon N(P,) has the shape as (Fig. 3), then the p-divisible
group J(p) of J(C) is isogenous to UGy m, + Gm n) where n., m, are positive
tntegers such that 1 <n, <m,, (n,, mc) =], and n, + m, = d =: the number
of distinct characteristic roots 7; of P,(\) withv,(1;) = ac,0 < ¢ < }, and td = g.
In other words, M(P,) determines the isotypic components of J(p) (mther than its
simple components).

DerinrrioN 6.1. The formal group of the type G, ,, + G, Where n, m
are positive integers such that 1 <<z <m, (n, m) = 1, and n 4 m = g is called
the symmetric formal group of a'zmenszon y:

Proof of Theorem 6.1. (a) (ai) = (ail). Put pojr; = 7,y for i =1,..,¢
Then v,(r;) = ac, vy(r,.5) = a(l — ¢) for every 1 < i < g, from which we have
immediately that v,(a,,) = 0, v,(a,,_;) > aci for every 1 < i < g, v,(a,) = acg,
and v,(a,.;) = acg + ia(l — ¢) for every 1 <{i<{g. Hence it follows that

Therefore, we get
Min P58 _ 2@) _
ogi<ts a(2g — i) ag
Now put 7, =cg and m, =g —n, = (1 — c)g. Then n,, m, are positive

integers satisfying 1 <<n, <m,,n, + m, =g, (n,,m;) =1, and ¢ = n,/(n, + m,).
(In fact, if (n,, m,) % 1, then n, == dn,’ with n,’ = ¢g/d. This implies that
P,(X) has g/d distinct roots with v,(r;) = ac, which contradicts to the hypothesis
of (ai).)

(aii) = (aiii). See Manin [6, Theorem 4.1°].

(aiii) = (ai). Suppose that P,(A) has no such decomposition as (ai).
Then we have either

. gla) _h n,
Min a2g — 1) t, * n, -+ m,

or

: vp(4:) — vpla) 7 3 :
Min aQg —17) a@g—1)  n,+m, for 1> g

In the first case, J(p) is isogenous to the formal group of the type G, ; ; +
Gt 4.8, which is obviously nonisogenous to G,, m, G, .n, - In the latter case,
](p) 1s isogenous t0 G, ., + Gp . + G’ with ‘dimension of G’ > 1. But this is
impossible, because n, + m, + dim G’ > g
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(b) The assertion follows immediately from the proof of (ai) = (aii) and
from the hypothesis 0 < ¢ < .

(c) Corresponding to the segment S, , we get g roots 7; with v(r;) = ac,
0 < ¢ <} for every 1 <{i < g. If there are 4 distinct roots 7y ,..., 7; among
them, then ]’[Ll (A — 7)€ Z,{A] and P,(d) has the p-adic decomposition as

d

Poy=( I a- n)(A—pa/n))"'d.

=1

vylrg)=ae
Hence J(p) is isogenous to Gy, »,m * -+ G ’.n,") with 1 <<n," <m,/, (n,/, m,") =1,
andm,’ + n, = d. So R(P,) determine the isotypic component of J(p). Q.E.D.

TueorReM 6.2. Suppose that J(C) is elementary and that the p-divisible group
J(p) of J(C)is isogenous to the symmetric formal group of dimension g : G, + Gp,n
1<n<m (n,m) =1, and n+ m = g. Then the following statements are
equivalent:

(i) g divides the residue degree at every prime v in @ lying over p.
(ii) P,(A) is Q-irreducible, but P,(A) = P, (A) P, (A) where

g g
P, = l:Il (A —7;)and P,(A) = 1:[1 (A — ;) are Q-irreducible.
v,,(-r:);anly v,(r;z;zmm

(i) J(C) is k-simple.

(iv) o =@ =Q(w) is a CM-field of degree 2g. @ has the imaginary
quadratic field K in which p splits.

Proof. (i) < (ii) < (iii). As J(C) is elementary, P, (A) = P(A)* with P(A)
Q-irreducible and P(rr) = 0. Corresponding to the primes v in @ == Q(=) over p,
P(A) is decomposed into the product of Q,-irreducible factors P,(). Now we
shall compute the local invariants of &/ == End,(J(C)) ® Q at primes » in
@ = Q(m). First note that there are no real primes in @. Now by Manin [6],
P,()) has the p-adic factorization in the ring W(k) [p!/9] where W(k) denotes the
ring of Witt vectors over %, as

g

g

PNy =[] @ —p=/oxy) - [T (A — p*™/0yy),
i=1 i=1

where x; , y; are invertible elements in W(&) [p'/7]. So P,(A) splits in the ring

W(k) [p/9] into linear factors (A — p°*/9x;), (A — p*™/7y;). So the local invariants

are

i, = ord,(m) - [8,: Q,)/a = ord(m) - fa = LBV Lo o (amE) Fo
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where f, is the residue degree at v with 1 < f, < g. Hence e = 1, if and only if
all the i, are integers, if and only if P, (A), 7 = 1, 2 are Q,-irreducible, if and
only if f,,i =g for i = 1,2. This proves the equivalences (i) < (ii) < (iii).

(ii) = (iv). Since = is imaginary with deg(w) = 2g, @ = Q(=) is a
CM-field of degree 2g. Corresponding to the p-adic decomposition (ii) of
P,(}), there are two valuations v, , v, in @ over p with ord, (r) = an/g and

1
ord, (m) = am/g. In other words, there are two prime ideals »; , v, over p such
that (79) = 1§"§™ Now the Riemann hypothesis || = p®/2 implies that
(p) = v, and v, , v, are complex conjugates. Since fo, =gfori =1,2, psplits
in an imaginary quadratic subfield K, of @, whence the assertion (iv).

(iv) = (i). Suppose that the CM-field & = Q(#) has an imaginary
quadratic subfield K, in which p splits: (p) =’ where v, v are complex
conjugates. Take an ideal A such that W = vew/'em with | < n < m, (n, m) = 1
and n 4 m = g. Then U satisfies A’ = (p*) where A’ denotes the conjugate
of U, and hence we can find an algebraic integer 7€ @ such that () = A
(cf. Honda [4])). Thus (%) = v*®»'%™ and ord/(w) = an/g, ord,(n) = am/g,
and we see that P, (A) has g p-adic roots r; with order an/g together with g
p-adic roots r; with order amjg. Hence the local invariants are 7, = (n/g) - f,
and (m/g) - f, (mod Z). But the commutativity hypothesis of &/ implies that
1, = 0 (mod Z). This holds true if and only if f, and f, are divisible by g. Q.E.D.

ExampLE 6.3. We again consider the curve y* = 1 — x7 defined over the
prime field F,, where p is a prime such that p = 2 or 4 (mod 7). The Cartier—
Manin matrix 4 of C is given by

A = (¢, n)m,ne1,2,3 Where for p = 2 (mod 7),

€0 = (8 : gﬁ) c(—=De-a7 e . = 0 otherwise,

and for p = 4 (mod 7),

Ca,q = (((2;__11))//27) s (—1)ee-07 ¢, . = 0 otherwise.

So|A| =0and 4 A = (0) in both cases.

Now it is easy to see that the primes p = 2 or 4 (mod 7) satisfy p* = 1 (mod 7).
So in the notations of Example 5.4, we have f = 3 and »" = 2. Hence p splits
in the unique subfield K; = Q((—7)'/?) of L = Q({). Moreover, Honda [3]
has shown that for any s > 1, Q(#%) = K. Hence 2 <[®:Q] <6 and
[« : Q] << 3% - 2. As &7 contains the subfield L = Q({) of degree 2 -3, &/ is a
simple algebra over K;. Now note that K, = Q((—7)*/2) has the basis {1,

(1 4 (=7y3)/2}
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So we have

Ty
w3 = a, + a, (1_—}—_(_2_&_._), a,,a,eZ with N(a%) = pi.

Hence the characteristic polynomial of 7% is given by

P = (¥ — Qay + e + p°)° =: Q@A)

where O(}) is Q-irreducible and (24, + 4,)* — 4p® = —7Ta,® < 0. Since p splits
in K, the polynomial Q(A) must factor p-adicly, giving two primes vy , v, With
ord, (v°) = 1 and ord, (=*) == 2. Hence ord, () = § and ord, (7) = §. Hence
over some finite extension of @, , P,(A) has three roots r; with the order } and
hence we get 0,3, = 1,m,,3, =3 — 1 = 2. So J(p) is isogenous to G, , -+ G, ; .

What is the algebraic structure of J(C)? First we know that there are no real
primes in @. The local invariants are 7, = 1,2 and hence & is commutative
with [« : Q] = 6. Thus J(C) is simple over [, .

7. THE JacoBiaN Variery J(C) or C wITH THE FORMAL STRUCTURE OF
Mixep TYPEs

TreorREM 7.1. Suppose that the Cartier—Manin matrix A of C is such that
A£0),but |A| =0ink Let | A, — M, | = Y o b, b, = 1 be the charac-
teristic polynomial of A, = A AP --- A%, Then we have

(a) The following statements are equivalent:

(al) There is an integer 1 <t << g such that (b;,p) =1 and b; =
(mod p) for allj = 0,...,t — 1.

(ail) There exist the polynomials Py()), P()), and g(X) over Z,, such that
Pyd) = [Tt A — 72), Po(d) =TT (A — p%f7) with v,(7)) =0 for every
1 <i<g—t gA) = A% (mod p) and that P (A) = Py(X) P,(A) g(A).

YN (aili) §The p-divisible group J(p) of J(C) has the component (g — £)G, , .
The formal group T of J(C) has height g +- ¢.
(aiv)  The p-rank of J(C)isg — t.

O g-t ‘] g+t 2¢

FiGure 4
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(b) Assume that (a) is true; then the following statements are equivalent:
(bi) g0) = [Toey (A — =) with vy(r;) = a2 for every 1 <i < 2t.
(bii) The Newton polygon R(P,) of P,(A) has the shape of Fig. 4.
When the above is true, the p-divisible group J(p) of J(C) is isogenous to
(8 — 0G0 +1Gyy and T to G (p)~* + 1Gy,y -

(c) Assume that (a) is true; then the following statements are equivalent:
(ci) g(A) = HZ=1 (A — 7)(A — pofr;) with v, simple roots but v,(t;) = ac,
0<c<iforeveryl <i<it.
(cii) Write g(\) = Yoro diXi. Then g() is a distinguished polynomial
over Z,, and the coefficients d; satisfy the conditions:

: v(di)  _ vy(d) _ n
oS a0t —h T et mdm

where n, m are positive integers satisfying | <n <<m,(n,m) =1, andn+ m =t.

(ciil) The p-divisible group J(p) of J(C) is isogenous to (g — t)Gy,o +
Gpm + G where n, m are positive integers satisfying 1 < n <<m, (n,m) =1
andn+m=1t,andT t0 G,(pY¥ '+ Gpp + Gy -

When the above is true, the Newton polygon W(P,) of P,(A) has the shape of
Fig. 5.

S, +y =0
S, * y =-acx + ac(g+t)
S3 = y =—all-c)x + act

Sq * y =-aox + ag

FiGure 5
" Proof. (a) (ai) = (aii). Assume (ai). Then
P,() = (—1)#400% {(— 1=t + -+ 4 b} (mod p),

where A+t and (—1)9-2A?~t - --- + b, are relatively prime. So by Hensel's
lemma, there exist polynomials- Py(}), 5() over Z, such that

PyX) = (—1)p=—t 4 -+ b, (modp), deg Pd) =g —1,
B\ = (—1)y+N+  (mod p).
Moreover, in the algebraic closure @, of Q,, PyQ) = I[Tis (A — ) "with

vy(r) = 0 for every 1 <{i < g — ¢, because b, is a p-adic unit. Since P,(})
has always together with a root 7;, the root p%r;, h(A) contains the factor
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P,(X) = HZ;{ (A — p%/7)) with v (r;) = 0 for every 1 <i < g —¢. So there
exists g(A) € Z,[A] such that g(A) = (—1)?*A%* (mod p) and that A(X) = P,(A) g(A).
(ail) = (aiii). The first part follows from the Manin theorem 4.1 in [6].
The formal group T of J(C) is the connected component J(p)/(Q,/Z,)s* of J(p),
whence it has height 2¢ — (g — ¢) = g+ ¢.
(aiii) = (aiv). This follows from the fact that the p-rank of J(C)
coincides with the rank of the component G, ;in J(p).

(aiv) = (ai). The Dieudonné module corresponding to the J(p) contains
the factors T, (G, (py~*) @ T, (Q,/Z,)5"). Hence we can write P,(X) =
P(A) Py(A) g() where P,(X) (resp. Py(A): resp. g(})) is the characteristic
polynomial of the restriction of the p-adic representation T,(m) of the
Frobenius endomorphism =« to Ty (G.{(p)"%) (resp. T,(Q,/Z,)57): resp.
T (J(?)/(g — 1)G,.,p)). Both P,(}) and Py(A) have the same degree g — ¢
and moreover, Py(A) = ]_[i:; A— 7)) with v (r,) =0 for every 1 i< g—1,
since (Q,/Z,), is étale. As P,(]) satisfies the congruence (4) in Section 3:

P = (—1y¥ [ 4, — A, | (modp),

we have | A, — M, | == APy(A) (mod p). Here take b, = Py(0) (mod p). Then
(b, p) = 1 and b; = 0 (mod p) for allj = 0,..., t — 1.

(b) (bi) = (bii). Putting P,(A) = Py(X) P,(N) g(A) = 37, a,X, we have
immediately that v,(a,,_;) = 0 for every 0 <i < g — ¢, v,(a,4_;) = (a/2)i for
every 1 <{i <2t vy(a, ;) = a(t + ) for every 1 <7 < g — t. Hence the
Newton polygon R(P,) of P,(X) has the segments S, , .S, , S, with slopes 0,
—a/2 and —a, respectively, and looks like Fig. 4.

(bii) = (bi). Any segment (f, v,(a;)) > (I, v,(a;)) with I >j of N(P,)
with slope —m gives the roots 7y ,..., 7;_; of P,(d) in Q, with v,(r;) = m for
every 1 <i << I — j. Moreover, [T, (A — ;) with vu(r:) =m, is in Z,[A] and
divides P,(A). Hence the segments S;, S, , and S, correspond respectively to
the factors Py(d), g(A), and P,(A). Therefore, the p-divisible group J(p) is
isogenous to (g — 1) G, 4 + G, and T to G, (p)?~* + tG, , .

(c) Since g(A) is the characteristic polynomial of the restriction of
Ty(m) to the Dieudonnd module T,(J(p)/(g — t)Gy,), we have g(d) =
H:=1 A —7) (A — p%7) with 0 <wy(r;) < /2. Hence the same proof as
Theorem 6.1a for g(}) yield the equivalences (ci) < (cii) <> (ciii).

Now the factorization P,(}) = }:Zo aXt = Py(X) P,(X) g(X) gives v,{ag,_;) = 0
for every 0 <<i<<g —t, v,(a,, ) = ac for every 1 <i <1, v,(a,) = act
and vy(a, ;) = act + a(l — )i for every 1 < i < ¢, vy(a,_) = at and
V(@y—1—;) = a(t 4~ i) for every 1 <i<g-—t. Hence the Newton polygon
N(P,) has the segments §;, 7 = 1,..., 4 with slopes 0, —ac, —a(l — ¢), and
—a, respectively, and looks like Fig. 5. Q.E.D.
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THeorReM 7.2. Let = be a Weil number of order a and suppose that the center
D = Q(n) of & = Endy(J(C)) ® Q is a CM-field of degree 2g. Put 8 = = +
7 = 7 + p®/m. Then we have

(@) J(C)is elementary.
(b) P,(A) = A2 — A 4- p* € Q(B)[A]. Moreover, we have

(b1) (B, ) = 1 = J(C) is ordinary.
(b2) Assume that (B, p) # 1 and let f(A) =Y5_o d;X, d, = 1 be the minimal
polynomial of 8. Then we have

(b2.1) If B = 40 with « an algebraic integer satisfying (Norm(x),
p) = 1, then J(C) is supersingular.

(b2.2) If there exists the integer t such that (d;, p) =1, but d; =0
(mod p) for every 1 <j <t (take the smallest t if there are more than one such
integers), then the p-divisible group J(p) contains the component (g — )Gy, .
Moreover, if there is a valuation v over p in Q(B) such that ord,(B) = a/2 and that
v is unramified in @, then the p-divisible group J(p) is isogenous to (g — )G, o +
tG, 1, but J(C) is k-simple.

Proof. (a) This is the main theorem of Honda [4].
(b) For (bl), see Theorem 3.2 and for (b2.1), see Theorem 5.2.

(b2.2) It follows from the hypothesis that f(A) = XAt + - +- d;)
(mod p). Hence f(}) gives (g — t) p-adic roots with order 0. At these places v,
we have ord,(f) = 0 and the equation A* — BX - p® = 0 must split, giving
roots of orders 0 and a. Hence the local invariants 7, are integers, so satisfies
the commutativity condition for 7. This argument also shows that the p-
divisible group J(p) contains the component (g — 2)G,,. Now we have a
distinguished polynomial over Z,, corresponding to the factor A? of f(A) modulo p.
Suppose that there is a valuation v, in Q(f) over p such that ord, (8) = a/2.
Then we may write 8 = - p%/2« with « an invertible element in Q,(8) such that
{2, p) = 1. The equation X2 — B\ 4 p* = 0 gives = = p*/2Y where Y satisfies
the equation Y2 — «Y + 1 = 0. In modulo v, (i.e., in F,,, since v, is ramified)
if Y2 — oY 4+ 1 = 0 has no solution, then it must be irreducible over Q,(B).
Hence Y generates an unramified quadratic extension over Q,(8) and hence we
get the unique extension of ord to @ = Q(=) with residue degree 2. So = has
ord, () = a2 for the unique extension (again denoted) ord, in @ over ord
This shows that P,(A) has 2¢ p-adic roots with order a/2 and hence J(p) contains
the factor ¢Gj ;. Thus J(p)isisogenous to (g — 1)G, -+ tG, ; . Now we compute
the local invariant 7, ; 7, = ((a/2) - 2)/a€Z. Hence o/ = @ with [/ : Q] = 2¢
and hence J(C) is k-simple. Q.E.D.

Exampire 7.3. For hyperelliptic curves C of genus 2 over k, we have more
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complete classification theorem for the p-divisible group J(p) of J(C). The
notation in Theorem 7.2 remains in force.

(@ 14{#0=@B,p)=1=

2a
R(Py)

0 2 4
< J(p) ~ 2G4 = J(C) is ordinary.

(b) [ 4] =0, but 4 A® 0] =[(8 p) # 1, but (Tr(B), p) = 1] =

2a
R(Py)

< J(p) ~ Gpo+ Gy1-
() 141 =0and 4 AP = (0)] = [(B, p) # 1, (Tx(B), p*/*) # 1 and
(Norm(g), p%) # 1] = (B, p*/%) # 1 =

20 NPy

0 4
< J(p) ~2G,,, = J(C) is supersingular.

Proof. B being a real quadratic over @ and B = £ + 5(d)'/? with £, ne @,
and d square free, we have P,(A) = X* — BA -+ p? e Q(B)[A] and P, (1) =
At — Tr(B)A® 4- (2p° + Norm(B))A2 — Tr(B) p*A 4+ p*¢ € Q[A] and |A4,| =
Norm(B) (mod p). Hence the assertions follow immediately. -Q.E.D.

Exampre 7.4. We shall give an example of k-simple Abelian variety of
dimension 2 equipped with the mixed type of formal structure G, , + G, . Let
k =TFp and let B = 6 4 (29)*/2 in Q((29)'/2). Then |B] <2 -7 and =% —
Bm -+ T = 0 gives a Weil number of order 2 and @ = Q(=) is a CM-field of
degree 4. Since (8, 7) # 1, the Abelian variety X determined by =, up to isogeny,
is nonordinary. Then the minimal polynomial of 8 over Q is given by f(}) =
A2 — 12A 4 7 and f(A) = AA + 2) (mod 7). So there are two valuations over 7
in Q(f): ord, () =0 and ord, () = 1. At ord, , X* — A+ 7> = 0 splits,
giving roots with orders 0 and 2. Hence the p-divisible group X(p) of X has
the component G,4. At ord, , 7|8 in Q, and hence A* — BA -+ 72 = 0 has
the solution # = 7 - « where « satisfies the equation o — 3o 4 1 = 0. This «
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generates an unramified quadratic extension over Q,. So there is a unique
extension (again denoted) ord, of ord, to @ with ord, () = 1. Hence X{(p) is
isogenous to Gy o + Gj ; . The characteristic polynomial of 7 over Q is P,(A) =
A* — 12X 4 105A% — 588X -+ 74, which is easily seen to be Q-irreducible.
Thus X is k-simple. Q.ED.
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