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Motivation

Naïve representation of data causes problems (e.g.,
finite subsets of Z as lists).

How do we check if two representations of an
object are equal?
We need a notion of standardizing the
representation so we can algorithmically compare
them.
The goal of this talk is to give a semi-formal idea of
things one needs to consider when writing
computer algebra software from a mathematical
standpoint.
Specifically about equivalence.
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Relations

A relation is a property able to be shared by two
elements.

A relation is defined as a subset of the cartesian
product of a set and itself.
Those that are in this subset are related.

Definition
A binary relation ρ on a set S is defined by the set
R ⊆ S× S such that for each x, y ∈ S, (x, y) ∈ R iff x ρ y is
a tautology.
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Equivalence

The most important relation is one stating equivalence.

Definition
A binary relation ∼ is an equivalence relation on S if
for all a,b, c ∈ S, the following hold:

Reflexivity a ∼ a,
Symmetry a ∼ b ⇐⇒ b ∼ a, and
Transitivity a ∼ b∧ b ∼ c =⇒ a ∼ c.

Given a ∈ S, the set {x ∈ S | x ∼ a} is called the
equivalence class of a. This is denoted [a].
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Equivalence in Computer Algebra

Typically three levels of equality in computer algebra.
Given elements A,B in S, they may be equivalent on
many different levels.

Object-Level If B ∈ [A] (and therefore A ∈ [B]). They are
“mathematically equal”.

Form-Level If A and B are structurally and syntactically
the same (i.e., if their representation in
memory is identical, but reside in different
areas of memory).

Data-Level If A and B are coinciding objects in
computer memory (“pointer equality”).

If we have object-level equality defined mathematically
for a set, how do we obtain form-level equality?
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Equality Example

Suppose we have A := x2 + 2x+ 1 and B := (x+ 1)2.

A = B at the object-level, clearly.
A 6= B at the form-level. Supposing we represented
A and B as ASTs, A would have five leaves, while B
would have only 3. Therefore, they can’t even
construct a bijective map between leaves.
It follows that A and B don’t have data-level
equivalence.

If we had a procedure expand, then we could say
A = expandB at the form-level.
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Mathematics to Computer

One way to do this is to choose a “standard” or
“representative” element from each equivalence class.

Definition
Let S be a set under the equivalence relation ∼. The
canonical form of an element x ∈ S, denoted κ(x), is
an element of [x] such that for all y ∈ [x], κ(y) = κ(x).
The function κ : S→ S is called the canonizing
function.

This implies that x ∼ y ⇐⇒ κ(x) = κ(y).
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Canonizing Function Examples

Consider Q ∼= Z2. Denote an element a/b ∈ Q as
〈a,b〉 for clarity.

Then one such canonizing function
is

κ(〈a,b〉) =
®

sgn(ab)
|a|

gcd(a,b)
,

|b|
gcd(a,b)

¸

.

Consider the symmetric group represented by an
n-tuple of distinct natural numbers. A canonical
form of these objects would be a composition of
disjoint cycles ordered by each cycle’s least
element, e.g.,

κ[(x1, x2, . . . , xn)] = (x1,1, . . . , x1,p) ◦ · · · ◦ (xk,1, . . . , xk,q)

with

∀k : min
j

(xk,j) = x1,j and x1,1 < x2,1 < · · · < xk,1.
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What Do Canonical Forms Do?

Aside from picking a representative element of
each equivalence class, it has a more practical
value in computer algebra.

If all elements of a domain are in canonical form,
then we can do one very important thing: test for
equality. With the previous polynomial example,
expansion (and ordering by degree) allows testing
equality of coefficients pairwise.
This is why your grade-school teacher required all
fractions be put into “canonical form”, so he or she
could compare easily.
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Computing with Non-Equivalence Relations

Often, the relation of interest is not an equivalence
relation. Instead it might be, e.g., an ordering
relation.

However, this relation might be difficult to analyze.
In fact, it may be difficult to effectively compute in
the computer algebra world.
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Normalizing Functions

If the objects in question have a canonical form, then it
might be possible to translate a more general relation
into an equivalence relation.

Definition

Given a relation ρ on X, a function η : X2→ Y is called
the ρ-normalizing function if for all x ∈ X, η(x, x) = η0
and for all a,b ∈ X,

η(a,b) = η0 ⇐⇒ a ρ b.

The value of η(a,b) is called then ρ-normal form of a
and b.
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Normalizing Function Examples

Consider the typical floating-point representation
σM · 2E for sign σ, mantissa M, and exponent E; and
consider the relation ‘≥’.

A possible normalizing
function is η(x, y) := sgn(x− y) with η0 = 1.
Normalizing functions can be useful with
equivalence relations when there is no clear
canonizing function. Consider the problem of
determining if x = y. If the domain supports it,
η(x, y) := x− y with η0 = 0 is often helpful. This is
called the zero-equivalence problem.
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An Unfortunate Theorem

Computer algebra takes a pretty severe strike from
Daniel Richardson in 1968. He tells us this.

Theorem (Richardson)
Let R be the class of expressions generated by

1 the rational numbers, π, and ln2,
2 the variable x,
3 the operations addition, multiplication, and function

composition, and
4 the sine, exponential, and absolute value functions.

If E ∈ R, determining the truth of E = 0 is recursively
undecidable.
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