I was messing with elliptic divisibility sequences and Sage didn't do what I wanted

Katherine E. Stange

Stanford University

Sage Days, September 20th, 2011

Elliptic divisibility sequences

$E: y^{2}=x^{3}+A x+B$ an elliptic curve, $\quad P$ a point on E.
$\Psi_{n}-n$-th division polynomial, vanishes at non-zero n-torsion

$$
\begin{gather*}
\Psi_{1}=1, \quad \Psi_{2}=2 y, \quad \Psi_{3}=3 x^{4}+6 A x^{2}+12 B x-A^{2} \\
\Psi_{4}=4 y\left(x^{6}+5 A x^{4}+20 B x^{3}-5 A^{2} x^{2}-4 A B x-8 B^{2}-A^{3}\right), \\
\Psi_{n+m} \Psi_{n-m}=\Psi_{n+1} \Psi_{n-1} \Psi_{m}^{2}-\Psi_{m+1} \Psi_{m-1} \Psi_{n}^{2} \tag{1}
\end{gather*}
$$

Ψ_{n} encode multiplication-by- n :

$$
[n] P=\left(\frac{\phi_{n}(P)}{\Psi_{n}^{2}(P)}, \frac{\omega_{n}(P)}{\Psi_{n}^{3}(P)}\right)
$$

The sequence $\Psi_{n}(P)$ is an elliptic divisibility sequence.
Ward (1948): Anything satisfying (1) is $\Psi_{n}(P)$ for some (E, P). (Possibly singular.)

Example: $y^{2}+y=x^{3}+x^{2}-2 x, P=(0,0)$

$$
\begin{aligned}
& W_{1}=1 \\
& W_{2}=1 \\
& W_{3}=-3 \\
& W_{4}=11 \\
& W_{5}=38 \\
& W_{6}=249 \\
& W_{7}=-2357
\end{aligned}
$$

Example: $y^{2}+y=x^{3}+x^{2}-2 x, P=(0,0)$

$$
\begin{array}{ll}
W_{1}=1 & P=(0,0) \\
W_{2}=1 & {[2] P=(3,5)} \\
W_{3}=-3 & {[3] P=\left(-\frac{11}{9}, \frac{28}{27}\right)} \\
W_{4}=11 & {[4] P=\left(\frac{114}{121},-\frac{267}{1331}\right)} \\
W_{5}=38 & {[5] P=\left(-\frac{2739}{1444},-\frac{77033}{5482}\right)} \\
W_{6}=249 & {[6] P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)} \\
W_{7}=-2357 & {[7] P=\left(-\frac{2182983}{5555449},-\frac{20464084173}{13094193293}\right)}
\end{array}
$$

Example: $y^{2}+y=x^{3}+x^{2}-2 x, P=(0,0)$

$$
\begin{array}{ll}
W_{1}=1 & P=(0,0) \\
W_{2}=1 & {[2] P=(3,5)} \\
W_{3}=-3 & {[3] P=\left(-\frac{11}{9}, \frac{28}{27}\right)} \\
W_{4}=11 & {[4] P=\left(\frac{114}{121},-\frac{267}{1331}\right)} \\
W_{5}=38 & {[5] P=\left(-\frac{2739}{1444},-\frac{77033}{5482}\right)} \\
W_{6}=249 & {[6] P=\left(\frac{89566}{62001},-\frac{31944320}{15438249}\right)} \\
W_{7}=-2357 & {[7] P=\left(-\frac{2182983}{5555449},-\frac{20464084173}{13094193293}\right)}
\end{array}
$$

Example: $y^{2}+y=x^{3}+x^{2}-2 x, P=(0,0)$

$$
\begin{array}{ll}
W_{1}=1 & P=(0,0) \\
W_{2}=1 & {[2] P=(3,5)} \\
W_{3}=-3 & {[3] P=\left(-\frac{11}{3^{2}}, \frac{28}{3^{3}}\right)} \\
W_{4}=11 & {[4] P=\left(\frac{114}{11^{2}},-\frac{267}{11^{3}}\right)} \\
W_{5}=38 & {[5] P=\left(-\frac{2739}{38^{2}},-\frac{77033}{38^{3}}\right)} \\
W_{6}=249 & {[6] P=\left(\frac{89566}{249^{2}},-\frac{31944320}{249^{3}}\right)} \\
W_{7}=-2357 & {[7] P=\left(-\frac{2182983}{2357^{2}},-\frac{20464084173}{2357^{3}}\right)}
\end{array}
$$

Primes appearing in elliptic divisibility sequences

For primes of good reduction,

$$
p \mid \Psi_{n}(P) \Longleftrightarrow[n] P \equiv \mathcal{O} \quad(\bmod p)
$$

Example

n	1	2	3	4	5	6	7	8
Ψ_{n}	1	1	2	3	-5	$-2^{2} \cdot 7$	-67	$-3 \cdot 137$

n	9	10	11	12
Ψ_{n}	$-2 \cdot 11 \cdot 23$	$5 \cdot 13 \cdot 167$	74231	$2^{3} \cdot 3^{2} \cdot 7 \cdot 1319$

Primes appearing in elliptic divisibility sequences

Let $p>2$ be a prime of good reduction for E.
Let v_{p} be a discrete valuation associated to p.
Let N be the order of P modulo p.

$$
v_{p}\left(\Psi_{n}(P)\right)= \begin{cases}v_{p}\left(\Psi_{N}(P)\right)+v_{p}(n / N) & N \mid n \\ 0 & N \nmid n\end{cases}
$$

Example
$V_{3}\left(\Psi_{n}\right)$ for sequence $1,1,2,3, \ldots$

$$
\begin{aligned}
& 0,0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,2 \text {, } \\
& 0,0,0,1,0,0,0,1,0,0,0,3,0,0,0,1,0,0,0,1,0,0,0,2 \text {, } \\
& 0,0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,3 \text {, } \\
& 0,0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,2 \text {, } \\
& 0,0,0,1,0,0,0,1,0,0,0,4,0,0,0,1,0,0,0,1,0,0,0,2, \ldots
\end{aligned}
$$

The underlying reason is the formal group of E.
Let $E_{0}\left(\mathbb{Q}_{p}\right)$ be the points of non-singular reduction modulo p.
There's a filtration of subgroups of $E_{0}\left(\mathbb{Q}_{p}\right)$:

$$
E_{0}\left(\mathbb{Q}_{p}\right) \supset E_{1}\left(\mathbb{Q}_{p}\right) \supset E_{2}\left(\mathbb{Q}_{p}\right) \supset \ldots
$$

where

$$
E_{k}\left(\mathbb{Q}_{p}\right)=\left\{P \in E_{0}\left(\mathbb{Q}_{p}\right): P \equiv \mathcal{O} \quad\left(\bmod p^{k}\right)\right\}
$$

The theory of formal groups says that for $k \geq 1$,

$$
\frac{E_{k}\left(\mathbb{Q}_{p}\right)}{E_{k+1}\left(\mathbb{Q}_{p}\right)} \cong \frac{\mathbb{Z}}{p \mathbb{Z}}
$$

I wanted to know about bad primes

Example

$$
1,3,2 \cdot 3,3^{2}, 3^{3}, 2^{2} \cdot 3^{4}, 3^{6} \cdot 5,3^{7} \cdot 13,2 \cdot 3^{10}, \ldots
$$

has $v_{3}\left(\Psi_{n}\right)$:

$$
\begin{aligned}
& 0,1,1,2,3,4,6,7,10,11,14,16,19,22,25,29,32,38,40,45,49 \\
& 54,59,64,70,75,82,87,94,100,107,114,121,129,136,146 \\
& 152,161,169,178,187,196,206,215,226,235,246,256,267, \ldots
\end{aligned}
$$

The associated curve E has split multiplicative reduction at 3 . The associated point P reduces to the node.

P has singular reduction

Theorem (S.)
Let $p \neq 2$. Consider an elliptic curve E / \mathbb{Q}_{p} and $P \in E\left(\mathbb{Q}_{p}\right)$ a non-torsion point. Then there are integers

$$
a, \ell, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}
$$

such that
$v_{p}\left(\Psi_{n}(P)\right)=\frac{1}{c_{1}}\left(R_{n}(a, \ell)+c_{2} n^{2}+c_{3}+\left\{\begin{array}{ll}c_{4}+v_{p}(n) & c_{5} \mid n \\ 0 & c_{5} \nmid n\end{array}\right)\right.$.
where

$$
R_{n}(a, \ell)=\left\lfloor\frac{n^{2} \widehat{a}(\ell-\widehat{a})}{2 \ell}\right\rfloor-\left\lfloor\frac{\widehat{n a}(\ell-\widehat{n a})}{2 \ell}\right\rfloor .
$$

where \hat{x} denotes the least non-negative residue of x modulo ℓ.

The bad primes example

Example

$$
1,3,2 \cdot 3,3^{2}, 3^{3}, 2^{2} \cdot 3^{4}, 3^{6} \cdot 5,3^{7} \cdot 13,2 \cdot 3^{10}, \ldots
$$

has $v_{3}\left(\Psi_{n}\right)$:

$$
\begin{aligned}
& 0,1,1,2,3,4,6,7,10,11,14,16,19,22,25,29,32,38,40,45,49 \\
& 54,59,64,70,75,82,87,94,100,107,114,121,129,136,146, \\
& 152,161,169,178,187,196,206,215,226,235,246,256,267, \ldots
\end{aligned}
$$

The associated curve E has split multiplicative reduction at 3 .
The associated point P reduces to the node.

$$
c_{1}=1, c_{2}=-1, c_{3}=1, c_{4}=-1, c_{5}=18, a=4, \ell=9 .
$$

Everything has a meaning pertaining to reduction modulo 3 : e.g. $\quad \ell=v_{3}\left(\Delta_{E}\right), \quad\left[c_{5}\right] P \equiv \mathcal{O}(\bmod 3)$.

Integral points on elliptic curves

Theorem (Siegel)
Any elliptic curve E / \mathbb{Q} has only finitely many integral points.
How many?
Silverman and Hindry: A uniform bound assuming Lang's conjecture, or for curves with integral j-invariant.

How big?
e.g. Fix P; how big can n be such that $[n] P$ is integral?

Theorem (S.)

There is a uniform constant C such that for all elliptic curves
E / \mathbb{Q} in minimal Weierstrass form, and non-torsion points
$P \in E(\mathbb{Q})$, there is at most one value of

$$
n>C \frac{h(E)}{\widehat{h}(P)}
$$

such that $[n] P$ is integral.

$$
\begin{gathered}
h(p / q)=\log \max \{|p|,|q|\} \\
h(E)=\max \left\{h\left(j_{E}\right), \log \max \{4|A|, 4|B|\}\right\} \\
\widehat{h}(P)=\frac{1}{2} \lim _{n \rightarrow \infty} \frac{h\left(x\left(\left[2^{n}\right] P\right)\right)}{4^{n}}
\end{gathered}
$$

Theorem (S.)

There is a uniform constant C such that for all elliptic curves E / \mathbb{Q} in minimal Weierstrass form, and non-torsion points $P \in E(\mathbb{Q})$, there is at most one value of

$$
n>C \frac{h(E)}{\widehat{h}(P)}
$$

such that $[n] P$ is integral.
Conjecture (Lang)
There is a constant C_{L} such that for any elliptic curve E / \mathbb{Q} in minimal Weierstrass form, and non-torsion point $P \in E(\mathbb{Q})$,

$$
\widehat{h}(P) \geq C_{L} h(E) .
$$

Recall that

$$
[n] P=\left(\frac{\phi_{n}(P)}{\Psi_{n}^{2}(P)}, \frac{\omega_{n}(P)}{\Psi_{n}^{3}(P)}\right)
$$

The gcd

$$
\operatorname{gcd}\left(\Psi_{n}(P), \phi_{n}(P)\right)
$$

is supported on the bad primes.

Lemma (S.)
Let $D_{n} \in \mathbb{Z}$ be the denominator of $[n] P \in E(\mathbb{Q})$. Then I show

$$
\log D_{n} \leq \log \left|\Psi_{n}(P)\right| \leq \log D_{n}+\frac{n^{2}+1}{3} \log \left|\Delta_{E}\right|
$$

Proof of theorem Method of Patrick Ingram (linear forms in elliptic logarithms), with this estimate plugged in.

