
Sage Enhancement Proposal: Global Number

Theory

David Roe

June 12, 2007

1 Introduction

Currently Sage supports absolute and relative number fields, and fractional
ideals. However, in some ways relative extensions in Sage still behave like the
corresponding absolute extension (in printing, for example). There are also
many structures related to number fields, such as orders, ideals and fractional
ideals, class groups, unit groups, galois groups, completions, adeles and ideles
that remain either unimplemented or poorly integrated into Sage. This SEP
presents a plan to expand the scope of global number theory native to Sage.

There are a number of existing programs that have facilities for these
kinds of computations, including Pari, Magma, KANT, and GiNAC. Because
only Pari is open source, Sage currently uses Pari for most of the difficult
computations associated with number fields. Yet all of these systems have
lessons to teach us about useful structures and interfaces. In particular,
Magma’s interface provides much of the inspiration for the improvements
suggested in this SEP.

We first overview the classes implementing number fields, orders, ideals
and fractional ideals, class groups, unit groups, Galois groups, completions,
adeles and ideles.

1.1 Overview

There should be a variety of classes representing number fields in Sage, one
for each kind of data that can define a number field. For example, there
will be a class for number fields defined by an irreducible polynomial over Q,

1



a class for number fields defined by an irreducible polynomial over another
number field K, a class for a number field defined by another number field
L/K and a subgroup H of Gal(L/K), as well as others. Some of the different
kinds of number fields will require different types of elements, while others
won’t support elements. For more details, see section 2.

Number theorists frequently need to work with rings of integers in number
fields. More generally, Magma supports orders in number fields; Sage should
do the same. All orders will be sandwiched between an equation order and
the corresponding maximal order. How to implement orders is a little bit
ambiguous, since they are simultaneously rings, Z-modules, and in the case
of a relative extension L/K, OK-modules. This question of representation
is complicated by the fact that not all orders have power bases, and when
OK is not a principal ideal domain, they are not always free OK modules.
The implementation of elements of orders also raises some questions: does
one represent elements as Z-linear combinations of a Z basis for the order, as
OK-linear combinations of an OK pseudo-basis, or as K linear combinations
of a power basis of L/K. See section 3 for more information.

In addition to elements of number fields and orders, we also want to be
able to represent ideals. Again, we have multiple choices for representation.
For an ideal I of an order O over a maximal order OK , we can give generators
for I as an O module, generators as as OK module or a basis as a Z module.
We also want to be able to store fractional ideals, and there are similar choices
there. See section 4.

Given a number field L/K, we have a natural homomorphism of groups
from L× to the group of fractional ideals of L. The kernel of this map is
the unit group of L, and the cokernel is the class group. We want to be
able to represent these not only as abstract groups, but also with the maps
that fit them into the four term exact sequence: given an element of the unit
group, we should be able to get an element of L× that it maps to, and given
a fractional ideal, we should be able to find it’s class in the class group. See
section 5.

Likewise, we want to be able to work with the Galois group Gal(L/K) not
just as an abstract group, but also with its natural action on L. This action
should fit into a larger framework of group actions in Sage, which needs to
be developed. See section 6.

A number field L/K and a place w of L over v of K determine a comple-
tion Lw over Kv. Sage should support such completions, whether they be at
archimedean or non-archimedean , as well as appropriate automatic coercion

2



of elements. In addition, sage should have support for adèles and idèles. See
section 7.

2 Number Fields

One reason to have different types of number fields for different types of
defining data is the conservation of computational time and space. A number
field K and a set of places of K define a maximal abelian extension unramified
outside those places. Even though this data uniquely defines a number field,
some quantities associated to this number field are more difficult than others
to compute. For example, the defining polynomial of the number field is
much more difficult to compute than the degree or the discriminant. By
having a structure that defines a number field using class field theory data,
the computation of the defining polynomial is postponed until it is actually
needed.

The more important reason to have a variety of different kinds of number
fields is a question of representation. Even though the number field defined
by x8−x4 +1 is isomorphic to that defined by adjoining

√
2,
√

3 and
√
−1, at

times one is more suitable and at times the other. Similarly, it is important to
be able to work with relative extensions: all computations should be relative
to the given ground field, and elements should be written as polynomials
with coefficients in the ground field.

All number fields will have NumberField generic as a superclass. This
class will implement the common functionality shared by all of the num-
ber fields, It will also provide a unified interface for functions supported by
number fields and for conversion between different types of number fields.

Even though the rational field does derive from NumberField generic,
mathematically it is a number field. Since Magma is more strongly typed
than Sage, they do not consider Q a number field. But Sage should: by having
the classes RationalField and Rational implement all of the appropriate
functions, it is quite reasonable to have is NumberField return true on input
the rational field.

On the parent level, NumberField generic will have subclasses NumberField absolute,
NumberField relative, NumberField multiple, NumberField subfield, NumberField fixed field

and NumberField abelian extension.
The class NumberField absolute will support absolute number fields,

defined by a single irreducible polynomial over Q. I’m not totally convinced

3



that there’s a good reason to separate this class from relative extensions that
happen to have Q as the ground field (which are still permitted), but there
there are certainly some facts true about absolute extensions that are not
true in general (no unramified extensions of Q, etc. Thoughts here would be
appreciated.

The class NumberField relative will support relative number fields, de-
fined by a single irreducible polynomial over another number field K. This
class will be the workhorse of the number field classes. The base field K must
be one of RationalField, NumberField absolute, NumberField relative

or NumberField multiple, though these choices may expand in the future.
The class NumberField multiple will allow extension of a number field

K by adjoining the roots of polynomials f1, . . . , fm. The polynomial fi+1

must be irreducible over K[x1, . . . , xi]/(f1(x1), . . . fi(xi)). The ground field
is K, and the user provides names for the roots of the fi. With this repre-
sentation, certain computations may be easier in some cases: Galois groups
for example. In addition, elements can be represented in terms of user given
set of generators, rather than always in terms of a primitive element.

The class NumberField subfield will allow specification of a number
field as a subfield of an existing extension L/K by giving elements α1, . . . , αm

of L in order to generate the smallest subfield of L containing K and all
of the αi. With m = 1, this type of number field will be very similar to
NumberField relative; for m > 1 it will be very similar to NumberField multiple,
though there should not be a condition that the αi are independent as re-
quired for NumberField multiple... However, NumberField subfield comes
with a specified embedding into L.

The class NumberField fixed field will allow creating number fields
from subgroups of Galois groups. Given a Galois extension L/K (will this
also work for non-normal extensions?) and a subgroup H of Gal(L/K), create
the fixed subfield of L associated to H . As with NumberField subfield, this
type of number field has a specified embedding into L. In fact, elements of
either of these could just be implemented as elements of L with a different
parent.

Finally, the class NumberField abelian extension will allow creating
number fields using some sorts of class field theory data. I’m not sure exactly
how this should work, besides just working directly off what Magma does.

NumberField absolute and NumberField relative can have the same
class of elements. NumberField multiple will need to have a different class,
though both types should presumably inherit from a single NumberFieldElement generic

4



class. The two types of subfields don’t need their own types of elements. Fi-
nally, I can’t think of a way to even represent elements of an instance of
NumberField abelian extension that lie outside the ground field without
knowing the defining polynomial. I think it’s reasonable to require a conver-
sion to another type of number field before allowing creation of elements.

3 Orders in Number Fields

Support for orders in Sage should be similar to that in Magma. In particular,
one needs to be able to extend orders as one extends number fields (by
adjoining a root of a polynomial) and also by adding new integral elements
in the same number field. The first process should be done by calling the
extend/extension function on another order. Magma has a restriction that
one can only create extensions of maximal orders; we should think about why
they made this choice. I haven’t come up with a good name for the second
process yet.

Orders should generally be stored as modules over their ground order.
There is a theory of modules over Dedekind domains (this is probably why
Magma requires that the ground order be a maximal order): basically one
stores a pseudobasis and a fractional ideal of the ground order for each basis
element. One then has the option of checking whether a given pseudobasis
and corresponding set of fractional ideals defines a ring. In the case that the
ground order has class number one, we might want to change representation,
since in this case the order in fact is a free module. In particular, orders over
Z will be free Z modules.

Thus as with number fields, we should have corresponding different types
of orders. It’s not clear to me how it would be useful to have an NumberFieldOrder abelian extension

class, but all of the other corresponding classes, NumberFieldOrder absolute,
NumberFieldOrder relative, NumberFieldOrder multiple, NumberFieldOrder subfield

and NumberFieldOrder fixed field make sense.
One point about orders on which I question Magma’s choice is what to

do with the fraction field of an order. Magma gives this object it’s own type,
which keeps track of the order that it came from. Elements of this fraction
field are represented differently from elements of the corresponding number
field. Is the benefit of this alternative representation for elements and keeping
track of the originating order worth the extra type of structure? Perhaps.

5



4 Ideals

Given an order, one needs to be able to create both normal and fractional
ideals. As I mentioned in the overview, there are a number of choices for
default representation. I would like to get some more discussion on this
point.

5 Unit and Class Groups

The various types of number fields and orders should support the computa-
tion of unit and class groups. These should certainly be in a form so that
casting in appropriate direction works (though perhaps not automatic coer-
cion?). We need to figure out the best way to do this while still using Pari
for the back end (at least in the short term).

6 Galois and Automorphism Groups

I want to get computation of Galois and automorphism groups working so
that one can use them naturally with elements. They should have natural ac-
tions on appropriate fields, and inertia and decomposition groups should also
exist. One should be able to construct fixed fields associated to subgroups.

There should also be G-modules so that we can eventually implement
Galois cohomology.

7 Completions, Adèles and Idèles

There should be a natural way to complete any number field or order at
a prime ideal or infinite place and get the appropriate local object. There
should be automatic coercion supported with elements of the resulting com-
pletions.

Adèles and Idèles should exist. Perhaps one needs to specify them at the
set of places where they behave badly (and all infinite places), and provide a
function that can generate an appropriate local element given a place. One
might also need to specify a norm for the element as a whole... I’m not sure.

6


