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Thanks!

Your contributions to SAGE development are an important part of this massive
effort to unify free math software. Keep up the good work!



Goals for the talk

1. Connect with SAGE experts by introducing my research area:
Schubert varieties.

(a) The Flag Manifold

(b) Schubert Cells and Schubert Varieties

(c) Five Fun Facts about Schubert Varieties

2. Explain my dream for SAGE-TEX.

3. Describe some succesful computer proof techniques and some science
fiction research.



Enumerative Geometry

Approximately 150 years ago. . . Grassmann, Schubert, Pieri, Giambelli, Severi,
and others began the study of enumerative geometry .

Early questions:
• What is the dimension of the intersection between two general lines in R2?

• How many lines intersect two given lines and a given point in R3?

• How many lines intersect four given lines in R3 ?

Modern questions:

• How many points are in the intersection of 2,3,4,. . . Schubert varieties in
general position?



Why Study Schubert Varieties?

1. It can be useful to see points, lines, planes etc as families of Schubert
varieties with certain properties.

2. Schubert varieties provide interesting examples for test cases and future
research in algebraic geometry, combinatorics, representation theory, sym-
plectic geometry, and theoretical physics.

3. Applications in discrete geometry, computer graphics, and computer vision.



Vector Spaces

• V is a vector space over a field F if it is closed under addition and multi-
plication by scalars in F.

• B = {b1, . . . , bk} is a basis for V if for every a ∈ V there exist unique
scalars c1, . . . , ck ∈ F such that

a = c1b1 + c2b2 + · · · + ckbk = (c1, c2, . . . , ck) ∈ Fk.

• The dimension of V equals the size of a basis.

• A subspace U of a vector space V is any subset of the vectors in V that
is closed under addition and scalar multiplication.

Fact. Any basis for U can be extended to a basis for V .



The Flag Manifold

Defn. A complete flag F• = (F1, . . . , Fn) in Cn is a nested sequence of
vector spaces such that dim(Fi) = i for 1 ≤ i ≤ n. F• is determined by an
ordered basis 〈f1, f2, . . . fn〉 where Fi = span〈f1, . . . , fi〉.

Example.

F• =〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4, e2〉



The Flag Manifold

Canonical Form. Every flag can be represented as a matrix in row echelon
form.

F• =〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4, e2〉

≈





6 3 0 0
4 0 2 0
9 0 1 1
0 1 0 0



 =





3 0 0 0
0 2 0 0
0 1 1 0
1 0 0 −2









2 1 0 0
2 0 1 0
7 0 0 1
1 0 0 0





≈〈2e1 + e2, 2e1 + e3, 7e1 + e4, e1〉

Fln(C) := flag manifold over Cn = {complete flags F•}

= B \ GLn(C), B = lower triangular mats.



Flags and Permutations

Example. F• = 〈2e1+e2, 2e1+e3, 7e1+e4, e1〉 ≈





2 !1 0 0
2 0 !1 0
7 0 0 !1!1 0 0 0





Note. If a flag is written in canonical form, the positions of the leading 1’s
form a permutation matrix. There are 0’s to the right and below each leading
1. This permutation determines the position of the flag F• with respect to the
reference flag E• = 〈e1, e2, e3, e4 〉.



Many ways to represent a permutation





0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



 =
[

1 2 3 4
2 3 4 1

]
= 2341 =





0 1 1 1
0 1 2 2
0 1 2 3
1 2 3 4





matrix
notation

two-line
notation

one-line
notation

rank
table

∗ . . .
∗ . . .
∗ . . .
. . . .

= = (1, 2, 3)

1234

2341
diagram of a
permutation

string diagram
reduced
word



The Schubert Cell Cw(E•) in Fln(C)

Defn. Cw(E•) = All flags F• with position(E•, F•) = w

= {F• ∈ Fln | dim(Ei ∩ Fj) = rk(w[i, j])}

Example. F• =





2 !1 0 0
2 0 !1 0
7 0 0 !1!1 0 0 0



 ∈ C2341 =










∗ 1 0 0
∗ 0 1 0
∗ 0 0 1
1 0 0 0



 : ∗ ∈ C






Easy Observations.
• dimC(Cw) = l(w) = # inversions of w.

• Cw = w · B is a B-orbit using the right B action, e.g.
2

666664

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

3

777775

2

666664

b1,1 0 0 0

b2,1 b2,2 0 0

b3,1 b3,2 b3,3 0

b4,1 b4,2 b4,3 b4,4

3

777775
=

2

666664

b2,1 b2,2 0 0

b3,1 b3,2 b3,3 0

b4,1 b4,2 b4,3 b4,4

b1,1 0 0 0

3

777775



The Schubert Variety Xw(E•) in Fln(C)

Defn. Xw(E•) = Closure of Cw(E•) under the Zariski topology

= {F• ∈ Fln | dim(Ei ∩ Fj)≥rk(w[i, j])}
where E• = 〈e1, e2, e3, e4 〉.

Example.





!1 0 0 0
0 ∗ !1 0
0 ∗ 0 !1
0 !1 0 0



 ∈ X2341(E•) =










∗ 1 0 0
∗ 0 1 0
∗ 0 0 1
1 0 0 0










Why?.



Five Fun Facts

Fact 1. The closure relation on Schubert varieties defines a nice partial order.

Xw =
⋃

v≤w

Cv =
⋃

v≤w

Xv

Bruhat order (Ehresmann 1934, Chevalley 1958) is the transitive closure of

w < wtij ⇐⇒ w(i) < w(j).

Example. Bruhat order on permutations in S3.

132

231

123

321

213

312

!
!

!
""!!

"" !!

"
"

"

Observations. Self dual, rank symmetric, rank unimodal.



Bruhat order on S4

4 2 3 1

3 1 2 4

4 2 1 3

1 2 3 4

3 4 2 1

1 2 4 3

3 2 1 4

2 1 3 4

2 3 1 4

3 2 4 12 4 3 1

2 3 4 1 4 1 2 3

4 1 3 2

1 4 2 3

1 4 3 2

4 3 1 2

3 1 4 2

1 3 4 2

3 4 1 2

2 1 4 3

1 3 2 4

2 4 1 3

4 3 2 1



Bruhat order on S5

(3 4 2 1 5)

(2 4 1 5 3)

(3 4 2 5 1)

(4 5 3 1 2)

(4 1 3 5 2)

(2 3 4 1 5)

(3 4 1 2 5)

(4 2 1 5 3)

(3 5 4 1 2)

(1 5 3 2 4) (2 3 4 5 1)

(5 3 4 1 2)

(5 1 3 2 4)

(2 4 5 3 1)

(4 1 3 2 5)

(2 1 4 3 5)

(2 5 3 1 4)

(5 4 1 2 3)

(5 2 1 3 4)

(2 5 4 1 3)

(3 5 4 2 1)

(5 1 4 3 2)

(1 3 4 2 5)

(5 4 1 3 2)

(1 5 4 2 3)

(3 1 4 2 5)

(5 4 2 3 1) (4 5 3 2 1)

(1 4 2 3 5)

(5 3 4 2 1)

(1 2 3 5 4)

(2 5 4 3 1)

(1 3 5 4 2)

(1 2 4 5 3)

(2 1 5 4 3)

(3 1 5 4 2) (2 4 3 5 1)

(5 2 3 4 1)

(1 4 3 5 2)

(2 3 5 4 1)

(2 4 3 1 5)

(3 2 4 5 1)

(5 1 4 2 3)

(5 4 3 1 2)

(2 4 1 3 5)

(1 5 4 3 2)

(2 3 5 1 4)(4 2 1 3 5)

(4 2 3 5 1)

(4 2 3 1 5)

(5 4 2 1 3)

(1 2 3 4 5)

(4 1 5 2 3)

(5 2 3 1 4)

(3 2 4 1 5)

(1 2 4 3 5)

(5 2 4 1 3) (4 3 5 1 2)

(5 4 3 2 1)

(2 1 5 3 4)(1 4 3 2 5)

(4 1 5 3 2)

(5 2 4 3 1)

(1 3 5 2 4)

(2 3 1 4 5)

(1 2 5 4 3)

(3 1 5 2 4)

(5 3 1 4 2)

(1 5 2 4 3)

(4 3 5 2 1)

(3 5 2 4 1)

(5 1 2 4 3)

(1 3 2 4 5)

(2 3 1 5 4)

(3 2 5 1 4)

(3 1 2 4 5)

(4 1 2 5 3)

(5 3 2 1 4)

(2 5 1 4 3)

(5 3 2 4 1)

(3 5 2 1 4)

(1 3 2 5 4)

(3 5 1 4 2)

(1 4 5 2 3)

(3 1 2 5 4)

(3 2 5 4 1)

(3 5 1 2 4)

(4 3 2 5 1)

(4 3 2 1 5) (5 3 1 2 4) (4 3 1 5 2) (3 4 5 1 2)

(1 4 5 3 2)(2 4 5 1 3)

(3 4 5 2 1)

(4 1 2 3 5)

(4 5 2 1 3)

(4 3 1 2 5)

(3 2 1 4 5)

(4 2 5 1 3)

(2 5 1 3 4)

(2 5 3 4 1)(4 5 1 2 3) (5 2 1 4 3)

(1 4 2 5 3)

(1 2 5 3 4)

(1 5 3 4 2)

(1 3 4 5 2)(1 5 2 3 4)

(2 1 3 4 5)

(3 1 4 5 2)(5 1 2 3 4)

(2 1 3 5 4)

(3 2 1 5 4)

(4 5 1 3 2)

(2 1 4 5 3)

(4 5 2 3 1)

(3 4 1 5 2)

(4 2 5 3 1)

(5 1 3 4 2)



10 Fantastic Facts on Bruhat Order

1. Bruhat Order Characterizes Inclusions of Schubert Varieties

2. Contains Young’s Lattice in S∞

3. Nicest Possible Möbius Function

4. Beautiful Rank Generating Functions

5. [x, y] Determines the Composition Series for Verma Modules

6. Symmetric Interval [0̂, w] ⇐⇒ X(w) rationally smooth

7. Order Complex of (u, v) is shellable

8. Rank Symmetric, Rank Unimodal and k-Sperner

9. Efficient Methods for Comparison

10. Amenable to Pattern Avoidance



Five Fun Facts

Fact 2. There exists a simple criterion for characterizing singular Schubert
varieties using pattern avoidance.

Theorem: Lakshmibai-Sandhya 1990 (see also Haiman, Ryan, Wolper)
Xw is non-singular ⇐⇒ w has no subsequence with the same relative order
as 3412 and 4231.

Example:
w = 625431 contains 6241 ∼ 4231 =⇒ X625431 is singular
w = 612543 avoids 4231 =⇒ X612543 is non-singular

&3412



Five Fun Facts

Consequences of Fact 2.

(Bona 1998, Haiman) Let vn be the number of w ∈ Sn for which X(w) is
non-singular. Then the generating function V (t) =

∑
n vntn is given by

V (t) =
1 − 5t + 3t2 + t2

√
1 − 4t

1 − 6t + 8t2 − 4t3

=t + 2t2 + 6t3 + 22t4 + 88t5 + 366t6 + 1552t7 + 6652t8 + O(t9).

(Billey-Postnikov 2001) Generalized pattern avoidance to all semisimple simply-
connected Lie groups G and characterized smooth Schubert varieties Xw by
avoiding these generalized patterns. Only requires checking patterns of types
A3, B2, B3, C2, C3, D4, G2.



Five Fun Facts

Fact 3. (Billey-Warrington, Kassel-Lascoux-Reutenauer, Manivel 2000)
We have x ∈max-sing (w) ⇐⇒ x = w · (α1, . . . ,αm,βk, . . . ,β1) corre-
sponding to a 4231 or 3412 or 45312 pattern of the following form

!2

"3

"2

"1

!1

"4

!3

(1)

!3

!2

"4

!1
"3

"2
"1

(2)

!2

"2

!1

"1

(3)

Here ◦’s denote 1’s in w, •’s denote 1’s in x.

Open Problem. Describe the maximal singular locus of a Schubert variety
for other semisimle Lie groups using generalized pattern avoidance.



Five Fun Facts

Fact 4. There exists a simple criterion for characterizing Gorenstein Schubert
varieties using modified pattern avoidance.

Theorem: Woo-Yong (Sept. 2004)

Xw is Gorenstein ⇐⇒

• w avoids 31542 and 24153 with Bruhat restrictions {t15, t23} and
{t15, t34}

• for each descent d in w, the associated partition λd(w) has all of its inner
corners on the same antidiagonal.



Five Fun Facts

Fact 5. Schubert varieties are useful for studying the cohomology ring of the
flag manifold.

Theorem (Borel): H∗(Fln) ∼=
Z[x1, . . . , xn]
〈e1, . . . en〉

.

• The symmetric function ei =
∑

1≤k1<···<ki≤n

xk1xk2 . . . xki .

• {[Xw] | w ∈ Sn} form a basis for H∗(Fln) over Z.

Question. What is the product of two basis elements?

[Xu] · [Xv] =
∑

[Xw]cw
uv.



Cup Product in H∗(Fln)

Answer. Use Schubert polynomials! Due to Lascoux-Schützenberger, Bernstein-
Gelfand-Gelfand, Demazure.

• BGG: If Sw ≡ [Xw]mod〈e1, . . . en〉 then

Sw − siSw

xi − xi+1
≡ [Xwsi ] if l(w) < l(wsi)

[Xid] ≡ xn−1
1 xn−2

2 · · · xn−1 ≡
∏

i>j

(xi − xj) ≡ . . .

Here deg[Xw] = codim(Xw).

• LS: Choosing [Xid] ≡ xn−1
1 xn−2

2 · · · xn−1 works best because product
expansion can be done without regard to the ideal!



Schubert polynomials for S4

Sw0(1234) = 1
Sw0(2134) = x1

Sw0(1324) = x2 + x1

Sw0(3124) = x2
1

Sw0(2314) = x1x2

Sw0(3214) = x2
1x2

Sw0(1243) = x3 + x2 + x1

Sw0(2143) = x1x3 + x1x2 + x2
1

Sw0(1423) = x2
2 + x1x2 + x2

1
Sw0(4123) = x3

1
Sw0(2413) = x1x2

2 + x2
1x2

Sw0(4213) = x3
1x2

Sw0(1342) = x2x3 + x1x3 + x1x2

Sw0(3142) = x2
1x3 + x2

1x2

Sw0(1432) = x2
2x3 + x1x2x3 + x2

1x3 + x1x2
2 + x2

1x2

Sw0(4132) = x3
1x3 + x3

1x2

Sw0(3412) = x2
1x2

2
Sw0(4312) = x3

1x2
2

Sw0(2341) = x1x2x3

Sw0(3241) = x2
1x2x3

S 2 + 2



Cup Product in H∗(Fln)

Key Feature. Schubert polynomials have distinct leading terms, therefore
expanding any polynomial in the basis of Schubert polynomials can be done by
linear algebra just like Schur functions.

Buch: Fastest approach to multiplying Schubert polynomials uses Lascoux and
Schützenberger’s transition equations. Works up to about n = 15.

Draw Back. Schubert polynomials don’t prove cw
uv’s are nonnegative (ex-

cept in special cases).



Some Recommended Further Reading on Schu-
bert varieties

1. “Schubert Calculus” by S. L. Kleiman; Dan Laksov The American Math-
ematical Monthly, Vol. 79, No. 10. (Dec., 1972), pp. 1061-1082.

2. ”Young Tableaux” by William Fulton, London Math. Soc. Stud. Texts,
Vol. 35, Cambridge Univ. Press, Cambridge, UK, 1997.

3. “The Symmetric Group” by Bruce Sagan, Wadsworth, Inc., 1991.

4. “Numerical Schubert calculus” by Birkett Huber, Frank Sottile, and Bernd
Sturmfels, Journal of Symbolic Computation, 26, (1998) pp. 767-788.

5. “Determining the Lines Through Four Lines” by Michael Hohmeyer and
Seth Teller, Journal of Graphics Tools, 4(3):11-22, 1999.

6. “Flag arrangements and triangulations of products of simplices” by Sara
Billey and Federico Ardila, to appear in Adv. in Math.

7. “A Littlewood-Richardson rule for two-step flag varieties Revised version
“ by Izzet Coskun, preprint.



Dreams for Schubert Computations

Most of the tools we need are already in SAGE, like linear algebra packages,
tools for solving polynomial equations, graphviz, etc.
Here is what we need to further research in this area:

1. Poset functions: fast comparison algorithms, intervals, rank generating
functions, Möbius functions, test for lattice structure, test for poset iso-
morphism, (see Stanley “Enumerative Combinatorics” vol. 1)

2. Symmetric group tools: multiplication, cycle notation, representation the-
ory tools, symmetric functions, Schubert polynomials (see Sagan “The
Symmetric Group” and/or Fulton “Young Tableaux . . . “ )

3. Coxeter/Weyl group tools: Build elements from a Coxeter graph, re-
duced expressions, length, descents, assents, Kazhdan-Lusztig polynomi-
als, representation theory tools, Schubert polynomials, representation the-
ory tools. (see ”Combinatorics of Coxeter Groups” by Bjorner and Brenti)

4. Pattern Avoidance: Zeilberger’s tools for efficient enumeration of pat-
tern avoiding permutations, Billey’s tools for pattern avoidance learning
alorithms, patterns characterizing smoothness, rational smoothness, vex-
illary, freely braided, fully commutative, Boolean elements, etc. See also
work of Vince Vatter.



Dreams for SAGE-TEX

SAGE + LATEX = a better way to write about mathematics

Questions.
1. Could SAGE take in a whole latex file, macros and all, and convert it to

readable html?

2. Could SAGE recognize embedded code in LATEX? E.g.

\sage{
L = [[cos(pi*i/100),sin(pi*i/100)] for i in range(200)]
p = polygon(L, rgbcolor=(1,1,0))
p.save() ## or p.show()
}

3. Could SAGE allow a reader to easily modify an example or do experiments
and then export a new pdf file?



Dreams for SAGE-TEX

My Goals for SAGE-TEX.
1. Write a monograph entitled “Computational Aspects of Schubert Vari-

eties” with an emphasis on experimentation and calculations.

2. Combine the notion of Wikibooks with SAGE-TEXso others can easily
improve on what I write, add new material, make corrections.

3. Use SAGE-TEXas a presentation tool for making slides.



Computer proofs

A computer-assisted proof is a mathematical proof that has been at
least partially generated by computer. (From wikipedia.org)

1. Four Color Theorem: Any map can be colored by at most 4 colors so no
two contries with a common boarder have the same color.

(a) K. Appel and W. Haken, Every planar map is four colorable, Con-
temporary Math. 98 (1989). Announced in 1977.

(b) N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, The
four colour theorem, J. Combin. Theory Ser. B. 70 (1997), 2-44.

2. Kepler’s Conjecture: What is the densest arrangement of spheres in space?
Answer: π√

18
Announced in 1998 by Thomas Hales. See articles by Hales

and Ferguson in Discrete and Computational Geometry, 36 (2006), 1–265
for complete proof.

3. Hypergeometric Series: When does a hypergeometric series have a closed
form? See “A = B” by by Petkovsek, Wilf and Zeilberger (1996) on-line.

4. Smooth Schubert Varieties Theorem: See Billey and Postnikov “Smooth-
ness of Schubert Varieties via Patterns in Root Systems”, Advances in

( )



Computer proofs

Techniques.
1. Exhastive search.

2. Formal symbolic manipulation.

3. Universal comaparison via Sloane’s Online Encylopedia.

4. Proof by example.

5. Estimation.

Open Problem. How can we recognize a theorem which is amenable to
computer proof?



Computer Guessing

Question. How can we use a computer to guess the general form of a
family of polynomials or rational functions? Say f(j, k, n) is a (non-polynomial)
function whose output is a linear polynomial in n variables. Can we guess the
general form so a human can prove the formula by induction?

Example. j = 2, k = 4, n = 7,

x2 + x3 + 2x4 + 2x5 + 2x6 + 2x7

Guess.
∑n

i=j xi +
∑n

i=k xi



Summary of Problems

1. What is the maximal Singular locus of a Schubert variety for an arbitrary
semisimple Lie group?

2. How can we most efficiently detect interval pattern avoidance?

3. Could SAGE take in a whole latex file, macros and all, and convert it to
readable html?

4. Could SAGE recognize embedded code in LATEX?

5. Could SAGE allow a reader to easily modify an example or do experiments
and then export a new pdf file?

6. How can we recognize a theorem which is amenable to computer proof?

7. Can you find other techniques for computer verification, automated com-
parison of theorems, and “computer guessing”?


