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or....

Can SAGE be

Software for Applied mathematics,
Graphics, and Engineering?
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Outline

• Teaching — replace Matlab, Maple, etc.?

• Research — e.g., Numerical analysis

• Scientific computing, data manipulation, visualization

• chebfun — filling the gap between symbolic and
numerical computing?
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Advantages of SAGE

• Free and open source
• Students can install at home, on laptop, iPhone, etc.
• Students can use after leaving university,
• Researchers many places can’t afford Matlab, Maple, etc.

• Single interface for symbolic and numerical computing,
data manipulation, visualization, etc.

• Many applications require combinations of different
techniques

• Also supports latex, webpages, etc.

• Python scripting is popular for scientific computing
• Manipulating large data sets in various formats,
• Coupling together diverse software in different languages,
• Creating modern interfaces and GUIs for old codes,
• Organizing benchmark tests, validations, parameter

studies, etc.
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Python for numerics and scientific computing

Many packages and modules already available for

• Numerical methods: NumPy, SciPy, MatPy,
Pysparse, Signaltools, ...

• Graphics and visualization: Gnuplot, PythonPlot,
MayaVi, gracePlot.py, NURBS, ...

• Interfacing with other languages: f2py, swig, pymat,
...

Reference: Hans Petter Langtangen, Python Scripting for
Computational Science, Springer, 2004.
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Matlab functionality

Sparse matrix operations essential for many applications.

Example: Solve u′′(x) = f(x) on 0 ≤ x ≤ 1
with boundary conditions u(0) = u(1) = 0.

Let Uj ≈ u(xj), j = 1, 2, . . . , m
where xj = jh with h = 1/(m + 1).

Replace ODE by finite difference equations

1
h2

(Uj−1 − 2Uj + Uj+1) = f(xj), j = 1, 2, . . . , m.

This is a tridiagonal linear system of m equations.

R. J. LeVeque SAGE Days 4 June 12, 2007



Matlab spdiags and backslash

x = h*(1:m)’;
e = ones(m,1);
A = 1/h^2 * spdiags([e -2*e e], [-1 0 1], m, m);
b = f(x);
u = A\b;

The tridiagonal system is solved in O(m) operations,
not O(m3) as needed for a dense m×m matrix.

R. J. LeVeque SAGE Days 4 June 12, 2007



2D Poisson problem

Consideruxx(x, y) + uyy(x, y) = f(x, y) on unit square

with u = 0 on boundaries.

Finite difference methodwith “5-point stencil”:

1
h2

[(Ui−1,j − 2Uij + Ui+1,j)

+ (Ui,j−1 − 2Uij + Ui,j+1)] , i, j = 1 : m.

Natural row-wise ordering of unknowns:
(not the best for Gaussian elimination!)

U =


U [1]

U [2]

...
U [m]

 , whereU [j] =


U1j
U2j

...
Umj

 .

Gives sparsem2 ×m2 matrix with bandwidthm.
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2D Poisson problem

1
h2

[(Ui−1,j − 2Uij + Ui+1,j) + (Ui,j−1 − 2Uij + Ui,j+1)]

Gives sparsem2 ×m2 matrix with bandwidthm (blockm×m):

A =
1
h2


T I
I T I

I T I
...

...
...

I T

 , U =


U [1]

U [2]

U [3]

...
U [m]

 ,

Each blockT or I is itself anm×m matrix,

T =


−4 1
1 −4 1

1 −4 1
...

...
...

1 −4


R. J. LeVeque SAGE Days 4 June 12, 2007



2D Poisson problem

x = h * (1:m)’; y = x; [X,Y] = meshgrid(x,y);

I = eye(m); e = ones(m,1);
T = spdiags([e -2*e e], [-1 0 1], m, m);
A = 1/h^2 * (kron(I,T) + kron(T,I));

b = f(X,Y);
bvec = reshape(b,m^2,1);
uvec = A\bvec;
u = reshape(uvec,m,m);

Matlab uses Gaussian elimination with smart ordering.

For Poisson problem, better approach is FFT.

For general sparse systems, iterative methods often used.
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Other numerical software needs and issues

• Proper use of IEEE arithmetic, including NaN’s
In Matlab: 1/0 = Inf, 0/0 = NaN

• Backward compatibility: Old SAGE code should continue
to work in the future.

Crucial for software development, reproducibility, textbook
use.

• Parallel computing: Crucial for many large problems, even
as processors get faster (especially now since most are
multi-core).

Grid computing, GPU computing?
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Taylor series

Need symbolic manipulation of Taylor series in several
variables for general functions, e.g. in Maple:

> mtaylor(u(x+h,t+k),[h,k],3);

u(x, t) + D[1](u)(x, t) h + D[2](u)(x, t) k

2
+ 1/2 D[1, 1](u)(x, t) h + h D[1, 2](u)(x, t) k

2
+ 1/2 D[2, 2](u)(x, t) k
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Graphics and Visualization

Matlab is so popular largely because it combines

• simple programming capability,

• interfaces to high quality software,

• data manipulations tools,

• and simple and powerful graphics.

Numerical results often consist of approximations to functions
at millions of grid points — graphics is the only way to view and
interpret.
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Graphics and Visualization

Some issues to keep in mind...

• Need to support 1, 2, and 3 space dimensions. Often the
grids are nonuniform and domain is complicated.

• Often solution is time dependent and one wants to easily
make an animation of how it evolves.

• Many approaches to 3D visualization, e.g., isosurfaces,
contour lines on slices, volume rendering (voxel graphics),
velocity vectors, streamlines, quantities on bounding
surfaces, etc.

• Adaptive mesh refinement may be used — some regions
are covered by multiple grids.

• Lots of graphics packages exist — don’t want to reinvent all
this! Need basic graphics well integrated and perhaps front
end to more sophisticated packages.
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Sumatra event of December 26, 2004
Magnitude 9.1 quake near Sumatra, where Indian tectonic plate
is being subducted under the Burma platelet.

Rupture along subduction zone
≈ 1200 km long, 150 km wide

Propagating at ≈ 2 km/sec (for ≈ 10 minutes)

Fault slip up to 15 m, uplift of several meters.
(Fault model from Caltech Seismolab.)

www.livescience.com
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Tsunami simulations

Adaptive mesh refinement is essential

Zoom on Madras harbors with 4 levels of refinement:

• Level 1: 1 degree resolution (∆x ≈ 60 nautical miles)

• Level 2 refined by 8.

• Level 3 refined by 8: ∆x ≈ 1 nautical mile (only near coast)

• Level 4 refined by 64: ∆x ≈ 25 meters (only near Madras)

Factor 4096 refinement in x and y.

Less refinement needed in time since c ≈
√

gh.

Runs in a few hours on a laptop.

For animation and other related results, please visit
http://www.amath.washington.edu/~rjl/talks/hilo06/
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chebfun

On-going research problem led by Nick Trefethen (Oxford),

with Zachary Battles, Ricardo Pachón,

Toby Driscoll (Delaware).

References:

Z. Battles and L. N. Trefethen, An extension of Matlab to
continuous functions and operators, SIAM J. Sci. Comp. 25
(2004), pp. 1743–1770.

http://web.comlab.ox.ac.uk/projects/chebfun/
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chebfun

Example: f(x) = exp(−x2)
√

x + 2.

Suppose we need to work with g(x) =
∫ x
−1 f(y) dy.

Symbolic manipulation fails.

Numerical approach:
For example, g(0) ≈ f.nintegrate(x, -1, 0)

What if we need to ...

• compute ‖g‖ =
(∫ 1

−1 |g(x)|2 dx
)1/2

?

• compute (g, f) =
∫ 1
−1 g(x)f(x) dx ?

• work with h(x) =
∫ x
−1 g(z) dz ?
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chebfun

>> x = chebfun(’x’);
>> f = exp(x.^2) .* sqrt(2+x);
>> g = cumsum(f);

>> f2 = diff(g);
>> norm(f-f2)
ans =

2.760689672717827e-14

>> h = cumsum(g);
>> g’*f
ans =

8.316267551154510e+00

>> disp([size(f) size(g) size(h)]
-21 1 -22 1 -23 1
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Approximation by polynomials

Weierstrass approximation theorem: If f ∈ C[−1, 1] and p∗n is
the best approximation to f(x) by a polynomial of degree n,
then

‖p∗n − f‖∞ = max
−1≤x≤1

|p∗n(x)− f(x)| → 0 as n →∞.

Finding p∗n(x) is hard (too slow).

Interpolating polynomial: Given any n + 1 points there exists a
unique polynomial Pn(x) of degree ≤ n satisfying

Pn(xj) = f(xj), j = 0, 1, . . . , n.

Many ways to compute, barycentric interpolation is best.
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Polynomial Interpolation

Choice of interpolating points x0, . . . , xn.

Bad choice: Equally spaced, xj = −1 + jh with h = 2/n.

Runge phenomenon, ‖Pn − f‖∞ may blow up as n →∞

Good choice: Chebyshev points xj = cos
(

πj

n

)
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Polynomial Interpolation at Chebyshev points

Suppose f(x) is analytic in ellipse enclosing [−1, 1] with major
and minor axes of length L and `.

Then
max

−1≤x≤1
|Pn(x)− f(x)| ≤ CK−n

with K = L + `.

Moreover,
‖Pn − f‖∞ < 10‖p∗n − f‖∞

for n < 105 (and within a factor of 100 for n < 1066).

Spectral accuracy: error goes to zero faster than n−p for all p.
(and some finite p depending on smoothness of f if it’s not
analytic near interval).
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chebfun

On-going research including:

• Backward error analysis,

• Extension to piecewise continuous functions,

• Continuous analogues of Householder and LU
factorizations,

• Global optimization,

• Extension to 2D and 3D,

• Krylov space iterative methods for operators,

• Spectral methods for PDEs

http://web.comlab.ox.ac.uk/projects/chebfun/
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