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A Difficult Problem

What is real root isolation?

Given a polynomial, we find an interval with
rational endpoints containing each real root
(such that the intervals do not overlap).

My algorithm finds:
[−2,−35

64 ] [0, 1] [2, 4]
(The actual roots are −1, 1

2 , and 3.)

Most of my discussion will focus on
squarefree polynomials with integral
coefficients.

The problem is fairly easy if the degree is low
and the coefficients are small, but can be
very difficult for polynomials of high degree.
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A Difficult Problem

Constructing a polynomial
Consider the polynomial:

x5(x2 − 3)2 − 1
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A Difficult Problem

Constructing a polynomial
Consider the polynomial:

x995(x2 − 9999)2 − 1
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A Difficult Problem

Zooming in on the roots

Let’s take a closer look at those roots:
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A Difficult Problem

Yes, it’s hard

Our goal is to find a rational between these two roots. The simplest
rational between the roots has a 502-digit numerator. My algorithm
will actually find a rational whose denominator is a power of 2; the
simplest such rational has a 1000-digit numerator. (I don’t try to find
the simplest such rational; my algorithm finds a rational with a
2018-digit numerator.)

Most of the algorithms in the literature will compute the numerator of
the exact value of the polynomial at the separating rational they find.
This is a number with more than 996, 000 digits.
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A Difficult Problem

Subdivision algorithms

Most algorithms operate as follows:
I Find a segment of the real numbers guaranteed to contain all the real

roots.
I Try to verify that the segment contains either zero or one real roots.
I If this fails—if the segment might contain more than one real

root—then divide the segment in two pieces and recursively find the
real roots in each piece.

This leads to a conceptual binary tree structure. With the algorithms
I know about, the difficult polynomials are the ones with a deep tree.

A polynomial with many roots will have a wide tree—one with many
leaves. Such a tree cannot be extremely shallow; a binary tree with
1024 leaves must have average depth at least 10.

On this challenge polynomial, an algorithm that does strict bisection
will have a tree depth greater than 3300.
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Tools Möbius Transformations

Outline

2 Tools for Root Isolation
Möbius Transformations
Descartes’ Rule of Signs
Bernstein Polynomials
de Casteljau’s Algorithm
Interval Bernstein Polynomials
Degree Reduction
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Tools Möbius Transformations

Properties of Möbius transformations

Definition

A Möbius transformation is a function of the form

x 7→ ax + b

cx + d

where ad 6= bc.

Given two segments of the real number line, there is a Möbius
transformation that will map one segment onto the other. (For
instance, there is a Möbius transformation that will map (1/7, 2/3)
onto (0,∞).)
Given a Möbius transformation f and a polynomial with roots
r1, r2, . . . , rk, you can construct a new polynomial with roots
f(r1), f(r2), . . . , f(rk) (just based on the coefficients of the
polynomial, and without knowing the roots).
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Tools Descartes’ Rule of Signs
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Tools Descartes’ Rule of Signs

Estimating the number of positive real roots

Recall our polynomial x5(x2 − 3)2 − 1.
Expanded out, this is:

+ x9 − 6x7 + 9x5 − 1

Sign variations: 3. Positive real roots: 3.

We can map x 7→ −x to get:

−x9 + 6x7 − 9x5 − 1

Sign variations: 2. Negative real roots: 0.

Theorem

Descartes’ Rule of Signs: The number of positive real roots of a
polynomial is ≤ the number of sign transitions. The difference is even.
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Tools Descartes’ Rule of Signs

Using Descartes’ rule of signs

Theorem

Descartes’ Rule of Signs: The number of positive real roots of a
polynomial is ≤ the number of sign transitions. The difference is even.

Simple consequences: if the number of sign variations of a polynomial
is 0, it has no positive real roots. If the number is one, it has exactly
one positive real root. (If the number is greater than one, we do not
know how many positive real roots there are.)

The combination of Möbius transformations and Descartes’ rule of
signs is all you need for real root isolation: to count the number of
real roots in an interval, use a Möbius transformation to map that
interval onto (0,∞).
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Tools Bernstein Polynomials
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2 Tools for Root Isolation
Möbius Transformations
Descartes’ Rule of Signs
Bernstein Polynomials
de Casteljau’s Algorithm
Interval Bernstein Polynomials
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Tools Bernstein Polynomials

Definition of Bernstein polynomials

Definition

The Bernstein basis polynomials of degree n are

Bk,n(x) =
(

n

k

)
xk(1− x)n−k
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Tools Bernstein Polynomials

Definition of Bernstein polynomials

Definition

The Bernstein basis polynomials of degree n are

Bk,n(x) =
(

n

k

)
xk(1− x)n−k

Any polynomial of degree n or less can be expressed as a linear
combination of the degree n Bernstein basis polynomials.

I will write
n∑

k=0

βkBk,n(x)

as [βk, βk−1, . . . , β0] (note backwards order).
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Tools Bernstein Polynomials

Properties of the Bernstein basis

If 0 ≤ x ≤ 1 then 0 ≤ Bk,n(x) ≤ 1.

The degree-n Bernstein polynomials sum to 1:

n∑
k=0

Bk,n(x) = 1

If each Bernstein coefficient of P1 is ≤ the corresponding Bernstein
coefficient of P2, then P1(x) ≤ P2(x) for 0 ≤ x ≤ 1.

If each Bernstein coefficient of P is between a and b, then
a ≤ P (x) ≤ b for 0 ≤ x ≤ 1.
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Tools Bernstein Polynomials

The Bernstein control polygon

Consider the polynomial [−1, 7,−20, 21,−7, 2]
(this is
483x5 − 1200x4 + 1030x3 − 350x2 + 40x− 1).

The first and last Bernstein coefficient match
the values at 0 and 1.

The slopes of the Bernstein coefficients match
the slopes of the polynomial at 0 and 1.

The polynomial between x = 0 and x = 1 is
contained in the convex hull of the Bernstein
coefficients.

The number of real roots in the interval (0, 1)
is ≤ the number of sign variations in the
Bernstein coefficients; the difference is even.
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Tools de Casteljau’s Algorithm
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Tools de Casteljau’s Algorithm

de Casteljau’s algorithm—preliminaries

Given a polynomial P in Bernstein basis form and a split point a, de
Casteljau’s algorithm will create two polynomials P1 and P2.

I P1 is P stretched so that 0 7→ 0 and a 7→ 1.
I P2 is P stretched and shifted so that a 7→ 0 and 1 7→ 1.

We restrict ourselves to rational a, written in the form b
b+c .

The basic operation in de Casteljau’s algorithm is the weighted
average:

x y

by + cx

b + c
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Tools de Casteljau’s Algorithm

de Casteljau’s algorithm

Begin by writing down the Bernstein coefficients in a line. (Here,
each dot represents one Bernstein coefficient.)

Then, construct a triangle, where each number in the triangle is the
weighted average of the two numbers above it.

Now P1 is found along the left side of the triangle and P2 is found
along the right side of the triangle. (The bottommost number
becomes both the last coefficient of P1 and the first coefficient of P2.)
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Tools de Casteljau’s Algorithm

Consequences of de Casteljau’s algorithm

If your original degree-d polynomial has integral coefficients, then the
bottommost number is a rational with denominator ≤ (b + c)d.

To work with integral coefficients (typically much faster than
rationals), you can multiply P1 and P2 by (b + c)d. (This preserves
the locations of the roots.)

We see that the coefficients of P1 and P2 may have d log2(b + c)
more bits than the coefficients of P . If we split by bisection, this is
just d. For our challenge polynomial, where we need more than 3300
splits and d is 999, we end up with numbers with 3.3 million bits.
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Tools Interval Bernstein Polynomials
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Tools Interval Bernstein Polynomials

Approximating a Bernstein polynomial with fewer bits

We revisit P = [−1, 7,−20, 21,−7, 2]. P uses up to 5 bits per
coefficient.
If we only want to use 4 bits, we can use an interval polynomial:
Q = [−2, 6,−20, 20,−8, 2] + [0..1]. This represents “the set of all
polynomials where the first coefficient is between −2 and −1, . . . ,
and the last coefficient is between 2 and 3”. (So P ∈ Q.)
We define Q as the lower bounds of the coefficients and Q as the
upper bounds of the coefficients: Q = [−2, 6,−20, 20,−8, 2] and

Q = [−1, 7,−19, 21,−7, 3].
If P ∈ Q, then Q(x) ≤ P (x) ≤ Q(x) when 0 ≤ x ≤ 1.
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Tools Interval Bernstein Polynomials

Using interval polynomials

We’ve lost a lot of information by dropping that last bit: just looking
at Q, we may have either 1, 3, or 5 real roots.

When splitting an interval polynomial, we reject split points where we
cannot assign a definite sign.

We will want to find as much information as we can with a given
precision interval polynomial; if we cannot totally isolate the roots, we
will try again with higher precision.
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Tools Interval Bernstein Polynomials

de Casteljau’s algorithm for intervals

The interval version of de Casteljau’s algorithm increases the error
bound by d on a degree-d polynomial.

On our challenge polynomial, with about 3300 splittings and degree
about 1000, this means we will end up with an error bound of about
3.3 million. Without this error, we could isolate the roots by starting
with an initial interval polynomial with 7140-bit coefficients; with the
error, we need 7162-bit coefficients.
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Tools Interval Bernstein Polynomials

Bernstein polynomials in floating point

To hold an interval Bernstein polynomial with less than 53 bits of
precision, we can use a vector of IEEE double-precision floats. We can
carry out de Casteljau’s algorithm in floating point, and maintain
error bounds in much the same way we do for the integer version
(assuming correct, IEEE-compliant rounding).

This only gains a constant factor in performance over using
GMP—but it’s a huge constant factor.
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Tools Degree Reduction
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Tools Degree Reduction

Degree reduction—an example

Consider the quartic polynomial
[48000,−50600,−600, 47100,−30400] (with roots at 1

5 , 1
2 , 6

7 , and
20).

Between 0 and 1, it is bounded by the cubic interval polynomial
[45999,−82801, 73599,−32401] + [0..4001].
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Tools Degree Reduction

Degree reduction considerations

For any polynomial and any interval, there is a fixed absolute error
caused by degree reduction.

When reducing to a degree-d polynomial, shrinking the interval by a
factor of x will reduce this absolute error by at least xd.
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Tools Degree Reduction

Degree reduction limitations

With my algorithm, performing a degree reduction from degree a to
degree b involves a matrix Ra,b. Computing this matrix requires an
exact matrix inversion of a b× b matrix of rationals.

To avoid spending too much time in this matrix inversion, I only
perform degree reduction to polynomials of degree ≤ 30.
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Algorithm

Visual aid #1
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Algorithm

Visual aid #2
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Results
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Results

Preliminary benchmarks

Disclaimer: Each number in the following graphs comes from a single run
of the associated program (rather than “best of 3” or “average of several
runs”).
The “random polynomials” graph uses only a single polynomial of each
degree. (All algorithms are tested on the same polynomial).
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Results

The bad news
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Future Work
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Future Work

Ideas for speed improvements

Faster de Casteljau’s algorithm
I SSE2
I Anatole Ruslanov’s register tiling

Partial degree reduction

Faster degree reduction

Faster degree elevation

Better choices for when to degree reduce, when to do high-resolution
splitting

Better split point selection

Better choice of initial Möbius transformation

More choices of interval Bernstein polynomial representation types
(between GMP and native float): double-double? quad-double?
fixed-precision multi-word arithmetic?

Start with exact strategy and switch over to intervals

Move more to Pyrex; local optimizations
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Future Work

Interface improvements

Allow input polynomial coefficients to be intervals, or computable
reals (like the algebraic reals)

Specify a minimal width: once the intervals are this narrow, stop even
if roots are not isolated

Specify a maximum width: keep going after you’ve isolated a root
until intervals are this narrow (to actually compute the roots, instead
of just isolate them)

Provide a floating-point, inexact version of the algorithm
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Conclusion

Summary

Interval Bernstein polynomials (with careful precision control) and
degree reduction are both very important for this problem.

Experimental results indicate that my algorithm is asymptotically
faster than other implementations I could find; I conjecture this is
true.

Lots more improvements to make—someone please take over!
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Appendix Degree Reduction

Taylor expansion and low-degree approximations

Remember our plot of [−1, 7,−20, 21,−7, 2]
with its Bernstein coefficients.

If we use the degree-15 Bernstein basis instead
of the degree-5 Bernstein basis, the graph of
the coefficients matches the graph of the
polynomial much more closely.

Also, these degree-15 coefficients all lie on a
degree-5 polynomial.
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