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History

@ (1881) Simon Newcomb publishes “Note on the
frequency of use of the different digits in natural
numbers.” The world ignores it.

@ (1938) Frank Benford (unaware of Newcomb’s work,
presumably) publishes “The law of anomalous
numbers.”
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Newcomb noticed that the early pages of the book of
tables of logarithms were much dirtier than the later
pages, so were presumably referenced more often.
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Statement of Benford’s Law

Newcomb noticed that the early pages of the book of
tables of logarithms were much dirtier than the later
pages, so were presumably referenced more often.

He stated the rule this way:

Prob(first significant digit = d) = log,, (1 + %) :

L
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Benford’s Law

Base 10 Predictions

| digit | probability it occurs as a leading digit |
30.1%
17.6%
12.5%
9.7%
7.9%
6.7%
5.8%
51%
4.6%
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Benford’s Data

TABLE I

Percentace oF Times THE Narvurat Numsers 1 1o 9 anre Usep as Finrst
Diarrs 1n NUMBERS, As DEI‘ERMH‘-EI) BY 20,220 OBSERVATIONS

Firat Digit
H Title Count
<] 1 2 3 4 5 o 7 8 [
A | Rivers, \ren '11‘0 164 10.7| 11.3| 72| 86| 55| 42| 61| 335
B | Population | 33.9 | 204 | 142 B1| 72| 62| 41| 37| 223250
C | Constants 413 144 48| B6| 106 58| 1.0| 20| 106 104
D | Newspapers | 30.0 | 18.0( 12.0| 100 80| 60| 60 50| 50| 100
i | Spec. Heat | 240 | 184 | 16.2 | 146 106 4.1 3.2) 48| 4.1]1389
F | Pressure 206|183 ) 128 | 98| 83| 64| 57| 44| 47| 703
H.P. Lost 30.0 ISAI 1.0 108 | 81| 70| 51| 51| 36| 600
H | Mol Wgt. | 267 252 | 154 | 10.8| 6.7 51| 41| 28| 3.2| 1800
I | Drainage 271|239 | 138 126| 82| 50| 50| 25| 19| 159
J \tmnu’\\irt] 472|187 55| 44| 66| 44| 33| 44| 55| 91
K fﬂ L wn, - 257 203| 97| 68| 66| 68| 7.2] 80| 89|5000
L 'I)es:nn 268 148|143 75| 83 84| 70| 73| 56| 560
M | Digest d34 | 185124 75| T 65 55| 40| 42] 308
N |Cost Data | 324 | 188 10.1| 10.1| 88| 55| 47| 55| 81| 741
O |X-RayVolts| 279 | 175 | 144 | 0.0| 81| 74| 51| 58| 48| 707
P [Am.League | 32.7 | 17.6 | 126 | 08| 74| 64| 40| 56| 3.0]1458
Q | Black Body | 31.0 | 17.3 | 14.1 BT| 66| 70| 52| 47| 541165
R | Addresses 289|192 126( 88| 85| 64| 56| 50| 50| 342
S Intyn?oon! | 253 160 120 10.0| 85| 88| 68| 71| 55| 900
T |DeathRate | 270| 186 | 157 04| 67| 65| 72| 48| 41| 418
Average. . .. 306 ) 185 124 94| 80 64| 5.1
Probable F |08 |04 |+0.4 |03 |40.2 |02 [+0.2
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More Data

predicted frequencies
3014 17.8 125

frequencies (percent)

fiest digit
W Benford's law newspapers  W1990 census Dow Jenes.

Benford’s Law compared with: numbers from the front
pages of newspapers, U.S. county populations, and the

| Dow Jones Industrial Average.
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Example

Suppose the Dow Jones average is about $1K. If the
average goes up at a rate of about 20% a year, it would
take five years to get from 1 to 2 as a first digit.
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Example

Suppose the Dow Jones average is about $1K. If the
average goes up at a rate of about 20% a year, it would
take five years to get from 1 to 2 as a first digit.

If we start with a first digit 5, it only requires a 20%
increase to get from $5K to $6K, and that is achieved in
one year.
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Example

Suppose the Dow Jones average is about $1K. If the
average goes up at a rate of about 20% a year, it would
take five years to get from 1 to 2 as a first digit.

If we start with a first digit 5, it only requires a 20%
increase to get from $5K to $6K, and that is achieved in
one year.

When the Dow reaches $9K, it takes only an 11%
increase and just seven months to reach the $10K mark.
This again has first digit 1, so it will take another doubling
(and five more years) to get back to first digit 2.
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Benford’s Law and Tax Fraud (Nigrini, 1992)

Benford's law

301 I 17.6 | 125 | 9.7 |

Irisz tax dala

an 47 4 158 a8 -a BEE ‘EQ o

fraudulent data
o| 19] o | 97 |62 |28 | 10 | 29 | o

random-guess data

frequencies {percent)

_H__'_J

Id I il I Iu I

first dlglt
W Benford's law Irise tax data W fraudulent dala random-guess data
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Benford’s Law and Tax Fraud (Nigrini, 1992)

Most people can’t fake data convincingly.
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Benford’s Law and Tax Fraud (Nigrini, 1992)

Most people can’t fake data convincingly.

Many states (including California) and the IRS now use
fraud-detection software based on Benford’s Law.
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True Life Tale

@ Manager from Arizona State Treasurer was
embezzling funds.
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@ Most amounts were below $100K (critical threshold
for checks that would require more scrutiny).
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True Life Tale

@ Manager from Arizona State Treasurer was
embezzling funds.

@ Most amounts were below $100K (critical threshold
for checks that would require more scrutiny).

@ Over 90% of the checks had a first digit 7, 8, or 9.
(Trying to get close to the threshold without going
over — artificially changes the data and so breaks fit
with Benford’s law.)
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True Life Tale

Exhibit 3: Check Fraud

The t @ checks that a ma
| Arizona St Treasurer wro

Arizona

he office of tha
5 for his 1 use
issued were fictitious

The vendors to whom the chechs wer

Date of Check i Amount _

October 9, 1992 $ 1,927.48

AR T P 90231 |

| October 14, 1992 41.90

I 72,117.46

81,321.75

| A73.96
October 19, 1992 93,249 11

89,658.17

‘ 87.776.89

92,105.83
79,949.16
| 87.602.93

96.879.27
91,806.47
84,291.67
90,831.83
| 93,766.67
| 88,338.72
94,639.49
83,709.28
| 96.412.21
| 88,432.86
16
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Benford Base b

A sequence of positive numbers {x,} is Benford
(base b) if

Prob(first significant digit = d) = log,, (1 + 13) .
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Formalism
oce

Problems with “Proofs” of Benford’s Law

@ Discrete density and summability methods.
Fq = {x € N | first digit of x is d}. No natural density.
That is,

lim Fdﬂ{1,2,...,n}

n—oo n

does not exist.
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e Continuous density and summability methods. (Same
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Problems with “Proofs” of Benford’s Law

@ Discrete density and summability methods.

e Continuous density and summability methods. (Same
problem.)

@ Scale invariance.

If there is a reasonable first-digit law, it should be
scale-invariant. That is, it shouldn’t matter if the
measurements are in feet or meters, pounds or
kilograms, etc.
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Hill’s Formulation (1988)

For each integer b > 1, define the mantissa function

MbiR+—>[1,b)
X=r

where r is the unique number in [1, b) such that x = rb”
for some n € Z.




Formalism
°

Hill’s Formulation (1988)

Definition
For each integer b > 1, define the mantissa function
Mbi RT — [1 ; b)
X—=r

where r is the unique number in [1, b) such that x = rb”
for some n € Z.

(*] M10(9) =0 = M100(9).
o My(9) = 9/8 = 1.001 (base 2).
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Hill’s Formulation (1988)

Definition
For E C [1,b), let

Definition

My ={(E)p | E C B(1, b)}is the o-algebra on R
generated by M,.
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Definition
Let P, be the probability measure on (R*, M) defined by

Po({[1,7))) = 109, 7.
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Definition
Let P, be the probability measure on (R*, M) defined by

Po({[1,7))) = 109, 7.

This probability measure:
@ Agrees with Benford’s law.
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Hill’s Formulation (1988)

Definition
Let P, be the probability measure on (R*, M) defined by

Po({[1,7))) = 109, 7.

This probability measure:
@ Agrees with Benford’s law.

@ Is the unique scale-invariant probability measure on
(RT, Mp).
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Hill’s Formulation (1988)

Definition
Let P, be the probability measure on (R*, M) defined by

Po({[1,7))) = 109, 7.

This probability measure:
@ Agrees with Benford’s law.

@ Is the unique scale-invariant probability measure on
(RT, Mp).

Proof comes down to uniqueness of Haar measure.
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What types of sequences are Benford?

Real-world data can be a good fit or not, depending on
the type of data. Data that is a good fit is “suitably
random” — comes in many different scales, and is a large
and randomly distributed data set, with no artificial or
external limitations on the range of the numbers.
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What types of sequences are Benford?

Real-world data can be a good fit or not, depending on
the type of data. Data that is a good fit is “suitably
random” — comes in many different scales, and is a large
and randomly distributed data set, with no artificial or
external limitations on the range of the numbers.

Some numerical sequences are clearly not Benford
distributed base-10:
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What types of sequences are Benford?

Real-world data can be a good fit or not, depending on
the type of data. Data that is a good fit is “suitably
random” — comes in many different scales, and is a large
and randomly distributed data set, with no artificial or
external limitations on the range of the numbers.

Some numerical sequences are clearly not Benford
distributed base-10:

@ 1,2,3,4,5,6,7,... (uniform distribution)

eSS



Integer Sequences
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What types of sequences are Benford?

Real-world data can be a good fit or not, depending on
the type of data. Data that is a good fit is “suitably
random” — comes in many different scales, and is a large
and randomly distributed data set, with no artificial or
external limitations on the range of the numbers.

Some numerical sequences are clearly not Benford
distributed base-10:

@ 1,2,3,4,5,6,7,... (uniform distribution)

e 1,10,100,1000,... (first digit is always 1)
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Some numerical sequences seem to be a good fit

Plot of first digit freguencies wersus Benford's Law.

030

015k N

(e g

Powers of Two

YT S
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Some numerical sequences seem to be a good fit

Plot of first digit freguencies versus Benford's Law.

0.30

0.25

0.20

015

0.10

Fibonacci Numbers
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base b iff {y;} is equidistributed
mod 1, where y; = log, X;.
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Fundamental Equivalence

Data set {x;} is Benford base b iff {y;} is equidistributed
mod 1, where y; = log, X;.

Proof:
@ x = Mp(x) - b* for some k € Z.
e First digit of x in base bis d iff d < Mp(x) < d + 1.
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base b iff {y;} is equidistributed
mod 1, where y; = log, X;.

Proof:
@ x = Mp(x) - b* for some k € Z.
e First digit of x in base bis d iff d < Mp(x) < d + 1.

@ log,d <y <log,(d+ 1), where
y = log,(Ms(x)) = log, x mod 1.
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base b iff {y;} is equidistributed
mod 1, where y; = log, X;.

Proof:
@ x = Mp(x) - b* for some k € Z.
e First digit of x in base bis diff d < Mp(x) < d + 1.
@ log,d <y <log,(d+ 1), where
y =log,(Ms(x)) = log, x mod 1.
e If the distribution is uniform (mod 1), then the
probability y is in this range is

1 1
log,(d+1)—log,(d) = log, <d%> _ log, (1 . 8) |
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base b iff {y;} is equidistributed
mod 1, where y; = log, X;.
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base b iff {y;} is equidistributed
mod 1, where y; = log, X;.

log 2 /log 10

A
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x;} is Benford base b iff {y;} is equidistributed
mod 1, where y; = log, X;.

Kronecker-Weyl Theorem

If 3 ¢ Q then n3 mod 1 (resp. 3 mod 1) is
equidistributed.

Thus if log, a € Q, then " (resp. o) is Benford.
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Powers of 2

The sequence {2"} for n > 0 is Benford base b for any b
that is not a rational power of 2.

A7
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o

Powers of 2

The sequence {2"} for n > 0 is Benford base b for any b
that is not a rational power of 2.

Proof:
e Consider the sequence of logarithms {n(log, 2)}.

e By the Kronecker-Weyl Theorem, this is uniform
(mod 1) as long as log, 2 ¢ Q.

e If bis not a rational power of 2, then the sequence of
logarithms is uniformly distributed (mod 1), so the
original sequence is Benford base b.
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Fibonacci Numbers

The sequence {F,} of Fibonacci numbers Benford base b
for almost every b.
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Fibonacci Numbers

The sequence {F,} of Fibonacci numbers Benford base b
for almost every b.

Heuristic Argument:
@ Closed form for Fibonacci numbers:

)

Fo=—
" VB

;
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Fibonacci Numbers

The sequence {F,} of Fibonacci numbers Benford base b
for almost every b.

Heuristic Argument:
@ Closed form for Fibonacci numbers:

EURes|

Fn=—
VB

° ’(%)‘ < 1, so the leading digits are completely

- 1 (11v5)"

determined by —= <T> :

;
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Fibonacci Numbers

The sequence {F,} of Fibonacci numbers Benford base b
for almost every b.

Heuristic Argument:
@ Closed form for Fibonacci numbers:

HERes|

° ’(1 f)‘ < 1, so the leading digits are completely

Fr=

determined by (*T‘@)n

@ This sequence will be Benford base-b for any b where

log, <1+f> Z Q.

;
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Linear Recurrence Sequences

Consider the sequence {a,} given by some initial
conditions ag, a1, . . ., a—1 and then a recurrence relation

Anik = C1@nyk—1 + Codnyk—2 + -+ - + Ckan,

with ¢y, o, . . ., ¢k fixed real numbers.

eSS -
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Linear Recurrence Sequences

Consider the sequence {a,} given by some initial
conditions ag, a1, . . ., a—1 and then a recurrence relation

anik = C1@nik—1 + Co@nik—2 + -+ + Ckap,
with ¢y, o, . . ., ¢k fixed real numbers.

Find the eigenvalues of the recurrence relation and order
them so that [\i| > [Xo] > -+ > |kl

BA
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Linear Recurrence Sequences

Consider the sequence {a,} given by some initial
conditions ag, a1, . . ., a—1 and then a recurrence relation

Anik = C1@nyk—1 + Codnyk—2 + -+ - + Ckan,

with ¢y, o, . . ., ¢k fixed real numbers.

Find the eigenvalues of the recurrence relation and order
them so that [\i| > [Xo] > -+ > |kl

There exist number uy, U, . .., ux (which depend on the
initial conditions) so that a, = ut A + U] + - - - + Uk}

NS
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Linear Recurrence Sequences

With a linear recurrence sequence as described, if
log, |\1] ¢ Qand the initial conditions are such that uy # 0,
then the sequence {a,} is Benford base b.

R
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Linear Recurrence Sequences

With a linear recurrence sequence as described, if
log, |\1] ¢ Qand the initial conditions are such that uy # 0,
then the sequence {a,} is Benford base b.

Sketch of Proof:

e Rewrite the closed form as a, = uy\7 (1 +0 (k'“g»
where u = max; |u;| + 1.

OSSN
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Linear Recurrence Sequences

With a linear recurrence sequence as described, if
log, |\1] ¢ Qand the initial conditions are such that uy # 0,
then the sequence {a,} is Benford base b.

Sketch of Proof:
. n ku\?
@ Rewrite the closed form as a, = uy\] (1 +0 ( 2))
where u = max; |u;| + 1.

@ Some clever algebra using our assumptions to rewrite
this as a, = us A{ (1 + O(5")).

[
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Linear Recurrence Sequences

With a linear recurrence sequence as described, if
log, |\1] ¢ Qand the initial conditions are such that uy # 0,
then the sequence {a,} is Benford base b.

Sketch of Proof:
. n ku\?
@ Rewrite the closed form as a, = uy\] (1 +0 ( 2))
where u = max; |u;| + 1.

@ Some clever algebra using our assumptions to rewrite
this as a, = us A{ (1 + O(5")).

e Then y, = log,(an) = nlog, A1 +log, us + O(5").

[
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Linear Recurrence Sequences

With a linear recurrence sequence as described, if
log, |\1] ¢ Qand the initial conditions are such that uy # 0,
then the sequence {a,} is Benford base b.

Sketch of Proof:

e Rewrite the closed form as a, = uy\7 (1 +0 (k'“g»
where u = max; |u;| + 1.

@ Some clever algebra using our assumptions to rewrite
this as a, = us A{ (1 + O(5")).

e Then y, = log,(an) = nlog, A1 +log, us + O(5").

@ Show in the limit the error term affects a vanishingly
small portion of the distribution.




Elliptic Divisibility Sequences
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Elliptic Divisibility Sequences

Definition
An integral divisibility sequence is a sequence of integers
{un} satisfying

Un | Un Whenever n| m.

An elliptic divisibility sequence is an integral divisibility
sequence which satisfies the following recurrence relation
foralm>n>1:

2
Umn+nUm—nUj

2 2
= U1 Um—1U; — UnyqUn—1Up, (%)
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Boring Elliptic Divisibility Sequences

e The sequences of integers, where u, = n.




Elliptic Divisibility Sequences
00000000000

Boring Elliptic Divisibility Sequences

e The sequences of integers, where u, = n.

@ The sequence 0,1,—1,0,1,—1,....




Elliptic Divisibility Sequences
00000000000

Boring Elliptic Divisibility Sequences

e The sequences of integers, where u, = n.
@ The sequence 0,1,—1,0,1,—1,....
@ The sequence

1,3,8,21,55,144,377,987,2584,6765, . .. (this is
every-other Fibonacci number).




Elliptic Divisibility Sequences
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Not-So-Boring Elliptic Divisibility Sequences

@ The sequences which begins
0,1,1,-1,1,2,—1,-3,-5,7, -4, -28,29,59,
129, —314, —65, 1529, —3689, —8209, — 16264,
833313, 113689, —620297, 2382785, 7869898,
7001471, -126742987, —398035821, 168705471, . ..
(This is sequence A006769 in the On-Line
Encyclopedia of Integer Sequences.)




Elliptic Divisibility Sequences
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Not-So-Boring Elliptic Divisibility Sequences

@ The sequences which begins
0,1,1,-1,1,2,—1,-3,-5,7, -4, -28,29,59,
129, —314, —65, 1529, —3689, —8209, — 16264,
833313, 113689, —620297, 2382785, 7869898,
7001471, -126742987, —398035821, 168705471, . ..
(This is sequence A006769 in the On-Line
Encyclopedia of Integer Sequences.)

@ The sequence which begins
1,1,-3,11,38,249, —2357,8767,496036, —3769372,
—299154043, —12064147359, . . ..
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That Recurrence Relation

2 2 2
UmnUm—nUy = Umy1Um—1Uy — Upyg1Un_1Up,. (*)

If uy =1, o,us € Z~ {0} and uys/u, € Z ~ {0}, then
up € 7 for all n. Why?
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That Recurrence Relation

2 2 2
UmnUm—nUy = Umy1Um—1Uy — Upyg1Un_1Up,. (*)

If uy =1, o,us € Z~ {0} and uys/u, € Z ~ {0}, then
up € 7 for all n. Why?

@ Induction.
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That Recurrence Relation

UmnUm—nU? = Up1Um—1U5 — Upyq Un_q U, ()
If uy =1, o,us € Z~ {0} and uys/u, € Z ~ {0}, then
up € 7 for all n. Why?
@ Induction.

@ |up| counts perfect matchings on certain graphs
(Bousquet-Mélu—West, Speyer, others)
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That Recurrence Relation

2 2 2
UmnUm—nUy = Umy1Um—1Uy — Upyg1Un_1Up,. (*)

If uy =1, o,us € Z~ {0} and uys/u, € Z ~ {0}, then
up € 7 for all n. Why?
@ Induction.

@ |up| counts perfect matchings on certain graphs
(Bousquet-Mélu—West, Speyer, others)

@ Laurentness of u, in terms of uy, Uo, Us, Uy
(Fomin—Zelevinsky: cluster algebras)
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Elliptic Divisibility Sequences
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That Recurrence Relation

2 2 2
UmnUm—nUy = Umy1Um—1Uy — Upyg1Un_1Up,. (*)

If uy =1, o,us € Z~ {0} and uys/u, € Z ~ {0}, then
up € 7 for all n. Why?
@ Induction.

@ |up| counts perfect matchings on certain graphs
(Bousquet-Mélu—West, Speyer, others)

@ Laurentness of u, in terms of uy, Uo, Us, Uy
(Fomin—Zelevinsky: cluster algebras)

@ U, is the denominator of a point on an elliptic curve.
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Elliptic Divisibility Sequences
[e]e]e] lelelelelelele]e)

That Recurrence Relation

2 2 2
UmnUm—nUy = Umy1Um—1Uy — Upyg1Un_1Up,. (*)

If uy =1, o,us € Z~ {0} and uys/u, € Z ~ {0}, then
up € 7 for all n. Why?
@ Induction.

@ |up| counts perfect matchings on certain graphs
(Bousquet-Mélu—West, Speyer, others)

@ Laurentness of u, in terms of uy, Uo, Us, Uy
(Fomin—Zelevinsky: cluster algebras)

® U, is the denominator of a point on an elliptic curve.

y




Elliptic Divisibility Sequences
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Example: y® + y = x3 + x2 — 2x

U4 1

U =1

Uz = -3

Ug = 11

Us = 38

us = 249

u; = —2357
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Elliptic Divisibility Sequences
0000e0000000

Example: y® + y = x3 + x2 — 2x

U4 =1 P:(0,0)
U- =1

Uz = -3

Ug = 11

U5:38

us = 249

u; = —2357

TA




Elliptic Divisibility Sequences
0000e0000000

Example: y? + y = x® 4+ x® —

uy 1 P = (0,0)

Up = 1 [2]P = (3,5)
11 28

Uz = -3 [3]P 9 E)

114 267

Uy =11 4P =127 @)
2739 77033
1444° ~ 54872

_ 249 [6]P — 89566 31944320)

62001" 15438249
2182983 204640841 73)
5555449’ 13094193293

(-

- (fo1
Us = 38 [5]P:(
(

(-

U, = —2357 [7]P =

y




Elliptic Divisibility Sequences
0000e0000000

Example: y? + y = x® 4+ x® —

uy 1 P = (0,0)

Up = 1 [2]P = (3,5)
11 28

Uz = -3 [3]P 9 E)

114 267

Uy =11 4P =127 @)
2739 77033
1444’ ~ 54872

_ 249 [6]P — 89566 31944320)

62001° 15438249
2182983 204640841 73)
5555449’ 13094193293

(-

- (f21
Us = 38 [5]P:(
(

(-

U, = —2357 [7]P =

y
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Example: y2 + y = x3 + x2 — 2x

up =1 P = (0,0)
Uz = 1 [2]P = (3,5)
u=-3  [3P ( ;li_f)
us = 11 [4]/3:(%’_%)
us = 38 [5]P = (_237;29’ _7;(;1:3)
U =249  [6]P = (8295:267 31 21;?20)
| u; = —2357 [7]P = ( _212 §2€792233’ _2042225;;11 73)
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Division Polynomials

y

One defines elliptic functions W, on E : y? = x® + Ax + B
with

zeroes at the n-torsion points of E

poles supported on O

Then for

P=(x,y)eE, [nP= <\|<Jb:((PP))2 \IUJJ:((/?))S) '

If Pis an integral point,
vy =1, U, =2y, W3 = 3x* + 6Ax% + 12Bx — A?,
Wy = 4y(x® + 5Ax* + 20Bx® — 5A?Xx? — 4ABx — 8B° — A%), ...
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Division Polynomials

y

One defines elliptic functions W, on E : y? = x® + Ax + B
with

zeroes at the n-torsion points of E

poles supported on O

Then for

P=(x,y)eE, [nP= <\|<Jb:((PP))2 \IUJJ:((/?))S) '

If Pis an integral point,
vy =1, U, =2y, W3 = 3x* + 6Ax% + 12Bx — A?,
Wy = 4y(x® + 5Ax* + 20Bx® — 5A?Xx? — 4ABx — 8B° — A%), ...

WV, satisfy (x).
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Division Polynomials

Note:
@ gcd (¢n(P),V,(P))) =1in Z[A, B, x, y].
@ gcd (¢n(P), Vh(P)) is supported on p | Ag for
P e E(Q).
@ So V,(P) is almost the denominator of [n]P.
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Fundamental Correspondence

Theorem (Ward, 1948)

Ifu,: Z — Q satisfies (x), and if uy = 1, then for some

E:y*=x+Ax+B, ABeQ PecE«Q),

we have

u, = V,(E, P).
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Fundamental Correspondence

Theorem (Ward, 1948)

Ifu,: Z — Q satisfies (x), and if uy = 1, then for some

E:y*=x+Ax+B, ABeQ PecE«Q),

we have

u, = V,(E, P).

Ward’s Correspondence:

curve-point pairs (E, P) elliptic divisibility
E:y?=x3+Ax+B, sequences
ABeQ, PecEQ)( " Up:Z — Q

P€E[2]UE[3] uy =1, U2U37£0
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Growth Rate

208154043,

12064147350

B32264T4117

B5E04670108021 ,

BEE20E2E7 4365342 ,

720710377683508851

2651313751 26730646730
52061747034B47247 18135
36042157766246023788837200

1414837 218B37532261361 0002276

1302807 142003325246643577 4830177
1880714017 3988882482283520806228001 ,
23563346007 4235657 0408357 4703154628107 ,
526138431961 06505131B105101 1111 0767837939,

08582100 s
8471 1084852577
721136882 s
90211741 2311618648
10BOT20051BB5178: B3721404B958803 ,
152505207 46555227 776253146 14430 deara
52B54917282231346264004311 ,
141213531, 5ass,

1086178012221811520213055; 8 72385004845
1335187 6087 649817 4860507327 361 18541 01623580211 1163025747732171 306 1057508131

/6580 1 1178003,

40335441 580032677 237096 530 16,

113837 43310250456580052, 054 182420 ,
11376006577723488 28650050 GABIEEZT 12 341 412029,
1582531600673073213755775551353145608434520037 1 117 133207380; 0B433657624523140677834307

8310 g 686172334231




Elliptic Divisibility Sequences
000000000080

Heuristic Argument

e It's well-known that elliptic divisibility sequences
satisfy a growth condition like u, ~ ¢™ where the
constant ¢ depends on the arithmetic height of the
point P and on the curve E.
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Heuristic Argument

e It's well-known that elliptic divisibility sequences
satisfy a growth condition like u, ~ ¢™ where the
constant ¢ depends on the arithmetic height of the
point P and on the curve E.

e Weyl's theorem tells us that {n?a} is uniform
distributed (mod 1) iff o € Q.
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Heuristic Argument

e It's well-known that elliptic divisibility sequences
satisfy a growth condition like u, ~ ¢™ where the
constant ¢ depends on the arithmetic height of the
point P and on the curve E.

e Weyl's theorem tells us that {n?a} is uniform
distributed (mod 1) iff o € Q.

@ So we should at least be able to conclude that a given
EDS is Benford base b for almost every b.
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Heuristic Argument

e It's well-known that elliptic divisibility sequences
satisfy a growth condition like u, ~ ¢™ where the
constant ¢ depends on the arithmetic height of the
point P and on the curve E.

e Weyl's theorem tells us that {n?a} is uniform
distributed (mod 1) iff o € Q.

@ So we should at least be able to conclude that a given
EDS is Benford base b for almost every b.

e But: The argument with the big-O error terms is
delicate, and we need to work out some details.
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Elliptic Divisibility Sequences are Benford?

Plot of first digit freguencies versus Benford's Law.
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Elliptic Divisibility Sequences are Benford?

Flot of first digit freguencies versus Benford's Law.
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Elliptic Divisibility Sequences are Benford?

Plot of first digit freguencies wversus Benford's Law.
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