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Introduction

String dualities

Familiar picture of string dualities:

Five 10d string theories with known
microscopic descriptions

11d M-theory known only in its
low-energy limit - 11d SUGRA

String theories considered to be
limits in certain corners of M-theory
moduli space

Taken from Cern Courier.

⇒ Today we focus on M-theory and Type IIB and a way of thinking about
them called F-Theory
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Introduction

What is F-Theory?

A convenient “definition” is by duality with M-theory:

Compactify M-theory on T 2 = S1
a × S1

b with radii ra, rb

In the limit ra → 0 one obtains Type IIA on S1
b

This setup is T-dual to Type IIB on S1
b′ with radius rb′ = l2s

rb

Taking a second limit rb → 0 one ends up with decompactified Type
IIB
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Introduction

What is F-Theory? (II)

One can generalize this procedure by considering manifolds with an elliptic
fibration, i.e. one takes the compactification manifold Yn to be

T 2 → Yn → Bn−1 (1)

for some 2n − 2-real-dimensional base manifold B. Somewhat surprisingly,
the duality carries over fiber-wise. In particular one often considers
Calabi-Yau n-folds giving rise to minimal supersymmetry in 12− 2n
dimensions.
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Introduction

A geometrization of Type IIB

Okay - but what is the point of all of that?

⇒ F-theory geometrizes a certain Type IIB symmetry:

When compactifying on Yn, the moduli of Yn become fields of the
resulting effective theory

Since vol(T 2)→ 0, only the complex structure moduli of T 2 survive
and become the axio-dilaton: τ = C0 + i

gs

SL(2,Z) action on complex structure of T 2 is translated into SL(2,Z)
symmetry of Type IIB

In particular: Non-trivial fibrations give rise to varying axio-dilaton fields.
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Introduction

Gauge group from singularity resolution

Many more physical observables are realized as geometric quantities, since
C0 is sourced by D7-branes:

d ? dC0 = δ(2)(z − z0) ⇒ Codimension-1 singularities of T 2

associated with location of D7-branes.

There are subtleties in carrying out an M-theory reduction on a singular
manifold. Singularities have to be resolved first and the intersection
structure of the resolution divisors gives rise to the affine Dynkin diagram
of the gauge algebra.
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Introduction

Dictionary between geometry and physics

This logic carries over to singularities in higher codimensions:

Codimension of Singularity Physical Quantity

1 (Non-Abelian) gauge group
2 Matter curves
3 Matter couplings
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Introduction

Features of F-theory models

Phenomenological motivation:

Can easily generate e.g. SU(5) models with hypercharge flux breaking
to Standard model gauge group

Due to strong coupling effects, exceptional gauge symmetries can be
realized ⇒ allows certain phenomenologically desirable Yukawa
couplings

Existence of E6 points leads to promising values of the CKM matrix

Mathematical motivation:

Dualities between F-theory and heteroric string theory, mirror
symmetry

Study anomaly cancelation conditions ⇒ geometric identities for
Calabi-Yaus
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Overview

Literature

For the original works on F-theory see for example papers by Beasley,

Candelas, Donagi, Gukov, Heckman, Morrison, de la Ossa,

Sen, Vafa, Witten, Wijnholt.

Over the past few years, there has been much interest in constructing both
local and global F-theory compactifications with Abelian gauge factors.
For some references, see for example papers by Braun, Cvetič, Dolan,

Dudas, Grimm, Klevers, Marsano, Mayrhofer, Morrison, Palti,

Park, Saulina, Schäfer-Nameki, Weigand.

In this talk, I wish to present the main results of the recent paper
[arXiv:1306.0577] with Volker Braun and Thomas W. Grimm.
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Overview

What did we study?

We looked at

how to systematically construct n-folds with a given (toric) gauge
symmetry

which physical quantities are encoded by the Top (a certain building
block of the reflexive polytope) alone

under which conditions the fibration is flat
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Constructing Toric Fourfolds

Roadmap

We wish to construct elliptically fibered Calabi-Yau n-folds Yn with given

Abelian gauge group

Non-Abelian gauge group

Base manifold

We assume that Yn

can be described as a complete intersection in a toric ambient space

has an elliptic fiber described as a hypersurface in a two-dimensional
ambient space

Additionally: How much information is already fixed before specifying the
base manifold?
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Constructing Toric Fourfolds

Scanning through reflexive polytopes

For small n, one might be able to scan through all models. Reflexive
polytopes with reflexive sub-polygons give rise to elliptically fibered
hypersurfaces. For n = 3 and B = P2, see [Braun’11].

In particular, non-trivial gauge groups correspond to base loci over which
the fiber becomes reducible ⇐⇒ base rays with multiple pre-images under
fan morphism corresponding to projection.
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Constructing Toric Fourfolds

However, already for n = 4 this appears unfeasible. Instead proceed as
follows:

Fiber polygon
(hypersurface: 16 choices)

Top specifying 
gauge group  

Compact, resolved 
Calabi-Yau manifold  

Toric U(1) symmetries
and matter charges  

All U(1) symmetries
and matter charges
+ flatness check  

base independent base dependent 
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The Fiber

Step I: Choosing a fiber

Choose one of 16 reflexive polygons Fi to embed the elliptic fiber in. This
choice fixes the minimum number of U(1)s, i.e. it determines a subgroup

MWT ⊆ MW . (2)

Important: In general

rkMWT 6= number of toric sections of Fi . (3)
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The Fiber

Fiber examples

We set σi = fi − f0, i.e. choose f0 as zero section.

f0

f1

f2

F5

σ1 and σ2 independent

⇒ MWT = Z⊕ Z

f0 f1

f2

F16 3σ1 = 0, 2σ1 = σ2

⇒ MWT = Z3
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The Top

What is a Top? (I)

We are interested in engineering specific non-Abelian gauge groups. The
corresponding branes reside on divisors over which the fiber becomes
reducible.

Let us therefore work locally and engineer the fiber over a certain base
divisor. To do so we specify the preimage of the base ray under the fan
morphism f giving rise to the projection π : X 7→ Bn−1 where X is the
toric ambient space.
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The Top

What is a Top? (II)

For a base ray v we call the lattice polytope

f −1(v) ∩ P (4)

the Top over v where P is the reflexive polytope in which Yn is embedded.
Tops are three-dimensional. By definition, the fiber polygon is part of
every Top. Tops are not reflexive; they serve as “building blocks” of our
reflexive polytope.

Jan Keitel (MPI für Physik, München) Geometric Engineering in Toric F-Theory Oxford, September 29th, 2013 18 / 27



The Top

Step II: Choosing a Top

The algorithm in [Bouchard,Skarke‘03] allows to construct all possible
Tops for a given non-Abelian gauge group.

Example

Modding out automorphisms, we find 5 different SU(5) Tops for the fiber
F5 (dP2):

0

2

1

τ5,1 2

0,1

τ5,2

0

2

1

τ5,3

0

2

1

τ5,4 01,2
τ5,5
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The Top

U(1) Charges

The choice of Top already determines the charge of the 10 and fixes the
charges of the 5 representations modulo 5 for SU(5).

Example

Pick f2 as zero section, f0 and f1 as generators for U(1)0 and U(1)1,
respectively. Then

QU(1)0(5) ≡ 2 mod 5 QU(1)1(5) ≡ 0 mod 5 (5)

QU(1)0(10) = −1 QU(1)1(10) = 0 (6)

for the Top τ5,5:
01,2

τ5,5
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The Base

Step III: Choosing a Base

Last of all, choose the base manifold with dimC B = n − 1.

Question: How can one classify and construct all possible reflexive lattice
polytopes with given Top and base?

Answer: There exists a simple geometric algorithm.
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The Base

The Algorithm

Let the fiber polygon have vertices f1, . . . , fr , denote the base rays by
v1, . . . , vs and place the non-Abelian singularity on v1. Take the Top
vertices to be τj .
Embed into higher-dimensional polytope via

fi 7→ (fi , 0), v1 7→ (τj , v1), vi 7→ (ni , vi ) for i 6= 1 . (7)

The vectors ni specify the embedding and n − 2 of them can be set to
zero to eliminate freedom in GL(n − 1,Z) transformations.
The convex hull of all points must not add additional points to the fiber
polygon:
⇒ linear constraints for remaining ni
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The Base

Polytope of Compactifications

The allowed values of ni form the integral points of a lattice polytope.

Example

For τ5,5 with B = P3, there are 30 inequivalent fourfolds
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Flatness

Flatness of the Fibration

If the fiber dimension varies, the fibration is called non-flat.
Phenomenologically, one wants to avoid these cases, as they give rise to
infinite towers of fields.

When does that happen? Consider the hypersurface equation restricted to
the exceptional divisors

h|fi=0 =

ni∑
j

mj ,fiberpj ,base = 0 (8)

where m is a fiber monomials and p is a base polynomial. Then one
generically expects non-flat fibers in codimension min({ni}) on the GUT
divisor or min({ni}) + 1 in the base manifold.

Way out: ∩jV (pj ) = ∅ due to e.g. Stanley-Reisner ideal of B.

Jan Keitel (MPI für Physik, München) Geometric Engineering in Toric F-Theory Oxford, September 29th, 2013 24 / 27



Flatness

Translating flatness conditions

Non-flat fibers have different origins depending on the codimension of the
singular locus in the base.

Codimension 2 (relevant for n ≥ 3): Base independent, occur when
Top has interior facet points

Codimension > 2 (relevant for n ≥ 4): Base dependent.

Requiring flatness for n ≥ 4 imposes additional linear constraints on the ni

and is non-generic in this sense. In particular, certain combinations of Top
and base are always non-flat.
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Summary and Outlook

Summary

The choice of Top fixes the non-Abelian gauge group and the toric
U(1)s, not, however, the non-toric U(1)s (see
[Braun,Grimm,Keitel‘13.02] for an example). A complete
analysis of Abelian gauge groups is therefore base dependent.

We have determined the toric Mordell-Weil group for all 16 reflexive
fiber polygons and explained how to compute the base-independent
10 charge and 5 charge modulo 5.

We gave an algorithm to construct all embeddings for a given Top and
base and found geometric conditions for the flatness of the fibration.
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Summary and Outlook

Outlook

In order to construct Yn with multiple differently charged 10 curves,
one needs to consider elliptic fibers in higher dimensional ambient
spaces, e.g. P3. [Esole,Fullwood,Yau‘11] [ongoing work]

Many examples feature non-holomorphic zero sections inducing
non-trivial KK-charge for the matter curves and leading to new
CS-terms in M-theory compactification. [Grimm,Kapfer,Keitel

‘13.05]

Improve current understanding of non-minimal singularities ⇔
non-flat fibers and their physics. [Lawrie,Schäfer-Nameki‘12]

Possibly tweak current algorithms and overcome last obstacles to set
up a comprehensive scan of (a particular kind of) fourfolds?

Jan Keitel (MPI für Physik, München) Geometric Engineering in Toric F-Theory Oxford, September 29th, 2013 27 / 27


	Introduction
	Overview
	Constructing Toric Fourfolds
	The Fiber
	The Top
	The Base
	Flatness
	Summary and Outlook

