
Git and/or the New Sage Development Workflow
Making distributed version control work for you

Volker Braun

Oxford University

September 23, 2013



Outline

Introduction to Git
Introduction
Basic Git Concepts
Conflict Resolution

Git and the Sage Workflow
Setting Up
Using Git for Sage
Integration with Sage Trac

The Sage Dev Scripts

Summary

2 of 39



Linguistic Approach

git /gIt/
v Appalachian & southern US

variant of get
n Brit slang pejorative

foolish or worthless person

GIT(1) Git Manual GIT(1)

NAME

git - the stupid content tracker

SYNOPSIS

git [--version] [--help] [-c <name>=<value>]

[--exec-path[=<path>]] [--html-path] [--man-path]

...
3 of 39



Git, the DVCS

• Developed in 2005 to manage the Linux source code

I’m an egotistical bastard, and I name all my projects after
myself. First “Linux”, now “git” – Linus Torvalds

• Slated to overtake Subversion as the most popular VCS this year.

• Distributed – there is no central server

• Version Control System – manage changes to documents

• Git is free and open: http://git-scm.com

• Official git implementation: command-line program

• Various graphical user interfaces; I like gitg and git-cola

• Various websites offer git hosting (Github, Bitbucket,
Mathematical Institute https://git.maths.ox.ac.uk)

4 of 39

http://git-scm.com
https://git.maths.ox.ac.uk


Demo

Introduce the following commands:

• Copy repository from github:
git clone

https://github.com/vbraun/talk-git-sage-workflow.git

• View history:
git log

• Show current branch:
git branch

• Switching between branches:
git checkout master

git checkout my branch

5 of 39



The Git Directed Acyclic Graph

Whenever you run git commit, a snapshot of the current state1 is
added to the repository.

• Only forward: you can add commits, but never remove them.

• But: you can abandon them.

• Most of the time, commits have one (direct) parent commit and
one child commit.

• Multiple parents: Merge commit

• Multiple children: number can always increase in the future...

1Of the staging directory tree, see next slide.
6 of 39





The Staging Area

Three places to store files:

• The git database (the .git directory)

• Staging area

• The working directory: all files outside of .git

Staging area

The staging area are the files that will be committed by git commit

• Show staging: git status

• Add to staging: git add <filename>

• Remove from staging: git reset HEAD <filename>

8 of 39



Committing Changes

Creating a commit

• git commit

• Specify commit message on the command line:
git commit -m "my commit message"

Each commit is uniquely specified by the SHA1 hash2 of

• All changes to files

• All parent commits

• The commit message

None of these can ever be changed, including all direct and indirect
parents.

2a 40 digit hex number
9 of 39



Branches

Branches organize parallel development

• A branch is just a shortcut for a particular commit

• If you create a new commit, the branch automatically advances to
it

• The default branch is master, but you can use any name

• HEAD is the commit at the tip of the branch:
git show HEAD

• HEAD∼ is the parent of HEAD

• HEAD∼2 is the parent of the parent of HEAD

• etc.

10 of 39



Remote Repositories

• Remotes repositories are bookmarks.

• Configure with git remote

• Distributed VCS: all remotes are equal.

• The ”important” one (to you) is usually called origin

If there are no conflicts:

• Upload your changes to the remote repository:
git push <remote>

• Download changes from the remote repository and update the
local working directory:
git pull <remote>

• There is a default remote for each branch, see
git remote show <remote>

11 of 39



Merge Conflicts

Don’t Panic!

• Merge conflicts happen if there are overlapping edits.

• Resolving them is common and easy.

Example:

\begin {equation}

\ l a b e l {eq:quad}
x = \ f r a c {-b+- \ s q r t {b^2-4ac}}{2a}

\end{equation}
are the two roots of the quadratic equation.

12 of 39



On the flight to a conference I change this to

\begin {equation}

\ l a b e l {eq:quad}
x_{1,2} = \ f r a c {-b+- \ s q r t {b^2-4ac}}{2a}

\end{equation}
are the two roots of the quadratic equation.

While I’m still in the air, Jennifer corrects

\begin {equation}

\ l a b e l {eq:quad}
x = \ f r a c {-b\pm\ s q r t {b^2-4ac}}{2a}

\end{equation}
are the two roots of the quadratic equation.

and pushes it to our common remote repository.

13 of 39



Reconnecting...

When I try to push my commit, git rightfully refuses:

[vbraun@laptop]$ git push

To git@github.com:vbraun/talk -git -sage -workflow.git

! [rejected] quadratic_equation -> quadratic_equation (non -fast -forward)

error: failed to push some refs to ’git@github.com:vbraun/talk -git -sage -workflow.git

hint: Updates were rejected because the tip of your current branch is behind

hint: its remote counterpart. Merge the remote changes (e.g. ’git pull ’)

hint: before pushing again.

hint: See the ’Note about fast -forwards ’ in ’git push --help ’ for details.

The git status command tells me the same thing:

[vbraun@laptop]$ git status

# On branch quadratic_equation

# Your branch and ’origin/quadratic_equation ’ have diverged ,

# and have 1 and 1 different commit each , respectively.

# (use "git pull" to merge the remote branch into yours)

#

nothing to commit , working directory clean

14 of 39



I have to first pull3 Jennifer’s overlapping edit:

[vbraun@laptop]$ git pull

Auto -merging example/quadratic_equation.tex

CONFLICT (content ): Merge conflict in

example/quadratic_equation.tex

Automatic merge failed; fix conflicts and then commit the

result.

The file now looks like this:

\begin {equation}

\ l a b e l {eq:quad}
<<<<<<< HEAD

x_{1,2} = \ f r a c {-b+- \ s q r t {b^2-4ac}}{2a}
=======

x = \ f r a c {-b\pm\ s q r t {b^2-4ac}}{2a}
>>>>>>> d0615cf02b5615a07c34633 dabaf3c0eb57cac7a

\end{equation}
are the two roots of the quadratic equation.

3That is, download and merge
15 of 39



Resolving the Conflict

• Open the file in your favorite editor and fix, or

• Use a specialized program (I like meld): git mergetool

16 of 39



Finishing Up

• When you are finished resolving the conflict, just commit:
git add quadratic equation.tex

git commit -m "merged Jennifers TeX fix"

• Now, git lets me push to the remote repository.

• When Jennifer pulls from the remote later, she gets my change and
my resolution of the conflict.

• To abort the merge:
git merge --abort

17 of 39





Outline

Introduction to Git
Introduction
Basic Git Concepts
Conflict Resolution

Git and the Sage Workflow
Setting Up
Using Git for Sage
Integration with Sage Trac

The Sage Dev Scripts

Summary

19 of 39



Who Are You?

Your name and email address become part of the commit message

• Global configuration stored in ∼/.gitconfig. Either open in your
favorite editor to add

[user]

name = Your Name

email = you@host.com

• or via the command line:

git config --global user.name "Your Name"

git config --global user.email you@host.com

20 of 39



Trac Account

To contribute to Sage, you need

• a trac account, see instructions at http://trac.sagemath.org

• upload your ssh public key to the trac server

• This is described in detail in http://sagemath.github.io/

git-developer-guide/trac.html#authentication, a
temporary copy of the new developer guide.

21 of 39

http://trac.sagemath.org
http://sagemath.github.io/git-developer-guide/trac.html#authentication
http://sagemath.github.io/git-developer-guide/trac.html#authentication


Obtaining the Sage Sources

• Download the Sage git repository from github:
git clone git://github.com/sagemath/sage.git

• Setup the “trac” remote:
cd sage

git remote add trac

ssh://git@trac.sagemath.org:2222/sage.git -t master

• Note: the -t master means to only fetch the master branch by
default
◦ Pro: Avoids downloading all branches on trac; Faster and less clutter
◦ Con: You have to tell git which branches to download

22 of 39



Downloading a Branch from Trac

Temporary change

You should use the public/sage-git/master branch for now.
When the git transition is finished, it well be just master.

So, first get this branch:

• Tell git which branch to download:
git fetch trac public/sage-git/master

• Create a new local branch from what you just downloaded:
git checkout -b trac master FETCH HEAD

Then build Sage as usual (run make)

23 of 39



Uploading Changes

• Now edit files and commit changes. Just like with any other git
repository.

• If you have a (new or existing) ticket, fill in the “Branch:” field
with the name that you will be using to upload.

• The remote branch name must be u/user/description, where
◦ user is your trac username
◦ description is a free-form short description (and can include further

slashes)

• When you are ready to share, upload to trac:
git push --set-upstream trac

my branch:u/user/description

• Slightly different push command for subsequent uploads:
git push trac HEAD:u/user/description

24 of 39



Using Trac

• When you push to a trac ticket, the “Commit:” field on the trac
ticket is automatically filled out.

• The “Branch:” field is color coded:
◦ Green means that it applied cleanly to the current master.
◦ Red means that there is a conflict.

• If you click on the “(Commits)” link under/next to the branch, you
can see the list of commits.

• Download any branch for the first time as on the “Downloading a
Branch from Trac” slide.

• To get changes, use git pull trac u/user/description

25 of 39





Merging vs. Rebasing

While you are working on my branch, Sage development continues.

X---Y---Z my_branch

/

A---B---C---D master

Two ways to update:

• Merge: git merge master

X---Y---Z---W my_branch

/ /

A---B---C-------D master

• Rebase: git rebase master

X’--Y’--Z’ my_branch

/

A---B---C---D master
27 of 39



Rebasing

• Rebase: git rebase master

X’--Y’--Z’ my_branch

/

A---B---C---D master

• Pro: Clean history.

• Con: Since the SHA1 hash includes the hash of the parent, all
commits change.

• Only ever use rebase if nobody else has used one of your X, Y, Z
commits to base their development on.

• Only rebase commits that you have not yet pushed to trac.

28 of 39



Merging

• Merge: git merge master

X---Y---Z---W my_branch

/ /

A---B---C-------D master

• Pro: None of the existing commits changes

• Con: Introduces a new commit W that will be in the git log

history forever.

• When you push to trac, the extra commit propagates to your
collaborators.

• When in doubt, use merge instead of rebase.

• No new features in master that you depend on and no conflicts?
Do nothing. Don’t create useless merges.

29 of 39



Reviewing Commits

• Trac tickets are abstract goals to meet.

• Commits are individual changes of the sources.

• There is only a map ticket → subset of all commits, namely all
parents of the commit listed on the “Commit:” trac field.

• In particular, a commit can be part of multiple tickets.

Commits to review

The ticket commit and all parent commits leading to the ticket are
part of the review. Except for commits that are already merged into
Sage:
git log <branch-or-sha1> ^master

30 of 39



Dependencies and Reviewing Commits

• You can list the history excluding dependencies:
git log <branch> ^master ^<dep1> ^<dep2>

• But: When your ticket is merged, all parent commits are merged.

• Whether any particular parent is part of a dependency ticket can
change as the dependency ticket evolves.

• In particular, you might end up with abandoned commits from a
dependency.

• Hence: All parent commits are part of the review.

• To simplify review, start with the trac dependencies and have them
merged into Sage.

31 of 39



Outline

Introduction to Git
Introduction
Basic Git Concepts
Conflict Resolution

Git and the Sage Workflow
Setting Up
Using Git for Sage
Integration with Sage Trac

The Sage Dev Scripts

Summary

32 of 39



Sage Dev Scripts

Can develop normal tickets without using git or going to the
http://trac.sagemath.org web page yourself:

[vbraun@laptop]$ sage -dev help

usage: sage -dev [-h] subcommand ...

The developer interface for sage.

optional arguments:

-h, --help show this help message and exit

subcommands:

abandon Abandon a ticket or branch.

checkout Checkout another branch.

comment Add a comment to ‘‘ticket ‘‘ on trac.

commit Create a commit from the pending

changes on the current branch.

...

33 of 39

http://trac.sagemath.org


More on Dev Scripts

• Also available in a Sage session, for example

sage: dev.create_ticket?

sage: dev.commit?

• Scripts will set up your name/email/ssh keys on first use.

• Not part of official Sage release yet, but usable.

• Scripts are included in the public/sage-git/master branch.

34 of 39



Working on a Ticket

• Optional: Create a ticket on trac:
sage -dev create-ticket

sage -dev edit-ticket

• Create a local branch to work on the ticket:
sage -dev checkout --ticket <number>

• Work on the source code...

• Commit your changes:
sage -dev commit

• Push your local branch to trac:
sage -dev push

35 of 39



Reviewing Tickets

Likely to erase the dev scripts right now

If you checkout a ticket that does not contain the dev scripts, then
they will be gone after the checkout.

• Checkout the ticket into a local branch:
sage -dev checkout --ticket <number>

• If the ticket is good to go, set it to positive review:
sage -dev positive-review

• If there is any remaining issue add a comment:
sage -dev comment

• Or make edits yourself:
sage -dev commit

sage -dev push

36 of 39



The End. Questions?

37 of 39



Git Operations

Working Files

Stage

BranchesCloneRemote

fetch

addcommit

pull

push

commit -a

checkout--track

reset

reset --hard

merge

remote



More Cool Stuff

Sage+Git developer manual

The current draft for the Sage+Git development manual is here:
http://sagemath.github.io/git-developer-guide/

• git help <command> shows the help for any git command.

• git reset modifies the branch to point to an arbitrary commit.
For example, used to abandon commits.

• git stash is a place to put changes temporarily

• git reflog history of your local git commands. Allows you to
undo anything.

• Detached heads: git checkout <sha1> instead of git
checkout <branch>

39 of 39

http://sagemath.github.io/git-developer-guide/

	Introduction to Git
	Introduction
	Basic Git Concepts
	Conflict Resolution

	Git and the Sage Workflow
	Setting Up
	Using Git for Sage
	Integration with Sage Trac

	The Sage Dev Scripts
	Summary

