
Sage for Number Theorists
http://www.sagemath.org

William Stein1

1Department of Mathematics
University of Washington, Seattle

Bristol, 2007-11-14

http://www.sagemath.org

Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Shortcomings and Advantages

A Quote from Neil Sloane from Last Week

Neil Sloane

From: N. J. A. Sloane <njas@research.att.com>
Date: 8 Nov 2007 06:28
Subject: Re: dumb question about installing pari-gp with fink

I would like to thank everyone who responded to
my question about installing PARI on an iMAC.

The consensus was that it would be simplest to install sage,
which includes PARI and many other things.

I tried this and it worked!

Thanks!

Neil

(It is such a shock when things actually work!!)

OK, so what is this “Sage” that N.J.A.

Sloane is raving about?

Sage: Mission Statement

Sage: Mission Statement

Provide a single open source high-quality viable alternative to Magma,
Mathematica, Maple and MATLAB.

Do not reinvent the wheel but reuse as much existing building blocks as
possible and make sure the result is rigorously tested, easy to modify by the
end user and very well documented.

Also create a helpful environment and community to get help (mailinglists,
irc-channel, meetings, coding sprints). This helps not only development but
day-to-day research.

The Inquirer: Mathematics rediscovers the scientific method

This is from British magazine The Inquirer (http://www.theinquirer.net)!!

Mathematics rediscovers the scientific method

In open source software; By Egan Orion: Wednesday, 24 October 2007

IN AN OPINION published by the American Mathematical Society, David Joyner and
William Stein argue that the use of closed, proprietary mathematical software is
fundamentally incompatible with the standards of mathematical proof.

They note that at least one published article on mathematical theory has relied upon
the use of proprietary software to deduce various mathematical facts. They see a
disconnect in this practice for the checkability of mathematical reasonings, up to and
including the proofs of new mathematical theorems. They write:

“Increasingly, proprietary software and the algorithms used are an essential
part of mathematical proofs. To quote J. Neubuser, ’with this situation two
of the most basic rules of conduct in mathematics are violated: In
mathematics information is passed on free of charge and everything is
laid open for checking.’”

It’s somewhat astonishing to contemplate that mathematicians even got so lazy as

to trust the inner workings of closed software algorithms, but perhaps all it proves is

that they’re human too, after all.

What is Sage?

Sage is a very large mathematics software package developed by a worldwide
community of developers. Sage is:

1 a distribution of the best free, open-source mathematics software
available (Sage 2.8.12 ships over 50 third-party packages) that is easy to
compile or install from binaries.

2 a huge new library, which uniformly covers the widest area of
functionality, including several new implementations not yet found
elsewhere.

3 interfaces to almost all existing mathematics software packages (including
Magma, PARI, Gap, Mathematica, Maple, etc.)

Welcome to Sage...

Welcome to Sage:

−−−
| SAGE Ve r s i on 2 . 8 . 1 2 , Re l e a s e Date : 2007−11−06
| Type notebook () f o r the GUI , and l i c e n s e () f o r i n f o rma t i o n .
−−−

sage : E l l i p t i c C u r v e (’ 389a ’)
E l l i p t i c Curve d e f i n e d by

yˆ2 + y = xˆ3 + xˆ2 − 2∗x
ove r Ra t i o n a l F i e l d

sage : f a c t o r (2ˆ129 + 1)
3ˆ2 ∗ 1033 ∗ 1591582393 ∗ 2932031007403 ∗ 15686603697451

Python & Cython: The Languages of Sage
http://www.python.org and http://www.cython.org

Python

easy for you to define your own data types and methods on it
(bitstreams, ciphers, rings, whatever).

very clean language that results in easy to read code.

easy to learn (several good books, some free).

a huge number of libraries: statistics, networking, databases,
bioinformatic, physics, video games, 3d graphics, numerical computation
(scipy), and serious “pure” mathematics (via Sage)

Cython

a Python compiler (and more)

allows to mix C and Python which is crucial for fast execution speed

makes easy to use existing C/C++ libraries from Python.

project started by me as a fork of Pyrex

Robert Bradshaw (my first Ph.D. student) is the project leader

http://www.python.org
http://www.cython.org

Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Shortcomings and Advantages

Some Capabilities
see http://wiki.sagemath.org/cando

Number Theory (mwrank, Simon, Lcalc GP/PARI, NTL) Mordell-Weil
groups, very fast quadratic sieve, modular symbols for
general weight, character, Γ1(N), and ΓH(N), Kedlaya’s
point-counting algorithm (Harvey’s fast variant), Coleman
integration; Coleman integration and p-adic heights.

Elliptic Curves All the standard stuff, plus complex and p-adic L-functions,
and fast computation of p-adic heights and regulators for
p < 100000 with new algorithm.

p-adic Numbers Highly optimized support for arithmetic with a wide range of
different models of p-adic arithmetic.

And much much more...

http://wiki.sagemath.org/cando

Bonus: A Powerful Web-based Graphical User Interface
public notebooks available at http://www.sagenb.org

graphical user
interface

plotting

LaTeX
typesetting

remote access

worksheet
sharing

interface to
3rd party
systems, e.g.
Magma

http://www.sagenb.org

Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Shortcomings and Advantages

Integer Factorization

factor uses PARI

sage : t ime f a c t o r (n e x t p r ime (2ˆ40) ∗ nex t p r ime (2ˆ300) , v e r bo s e =0)
1099511627791 ∗
203703597633448608626844568840937816105146839366593625063614044935438129\
9763336706183397533
CPU t ime : 3 .77 s , Wal l t ime : 3 .82 s

ecm uses GMP-ECM by Paul Zimmermann et al.

sage : t ime ecm . f a c t o r (n e x t p r ime (2ˆ40) ∗ nex t p r ime (2ˆ300))
[1099511627791 , 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533]
CPU t ime : 0 .19 s , Wal l t ime : 0 .62 s

qsieve uses Bill Hart’s quadratic sieve implementation

sage : v , t = q s i e v e (n e x t p r ime (2ˆ90)∗ nex t p r ime (2ˆ91) , t ime=True)
sage : p r i n t v , t [: 4]
[1237940039285380274899124357 , 2475880078570760549798248507] 4 .00

DistributedFactor combines ECM, qsieve and trial division; written by Yi Qiang
and Robert Bradshaw.

LLL Lattice Basis Reduction

Sage includes several LLL implementations, including PARI’s,
NTL’s, and Damien Stehle’s fpLLL (currently the world’s best).

sage : from sage . l i b s . f p l l l . f p l l l import g e n n t r u l i k e
sage : A = g e n n t r u l i k e (200 ,130 ,35)
sage : t ime B = A. LLL () # use s fpLLL by Damien S t e h l e
CPU t ime : 14 .91 s , Wal l t ime : 15 .06

Elliptic Curves for Kids

X = []
f o r E i n c r emona op t ima l c u r v e s ([1 1 . . 3 7]) :

X . append (p l o t (E , t h i c k n e s s =10,
r g b c o l o r =(random () , random () , random ())))

show (g r a p h i c s a r r a y (X, 4 , 5) , axe s=Fa l s e)

Elliptic Curves over Fq

Plot elliptic curves over finite fields:
sage : e = E l l i p t i c C u r v e (”37a”) # Cremona Labe l
sage : E = e . c h ang e r i n g (GF(997))
sage : show (E . p l o t ())

Sage includes a fast SEA implementation.

sage : k = GF(nex t p r ime (10ˆ20))
sage : E = E l l i p t i c C u r v e (k ,
. . . [k . random element () , k . random element ()])
sage : t ime E . c a r d i n a l i t y ()
CPU t imes : u s e r 0 .00 s , s y s : 0 .02 s , t o t a l : 0 .02 s
Wal l t ime : 0 .56
99999999985979523788

Elliptic Curve and p-adic BSD / Iwasawa Theory

sage : E = E l l i p t i c C u r v e (’ 389a ’)

sage : L = E . p a d i c l s e r i e s (5)
sage : L . s e r i e s (3)
O(5ˆ5) + O(5ˆ2)∗T + (4 + 4∗5 + O(5ˆ2))∗Tˆ2

+ (2 + 4∗5 + O(5ˆ2))∗Tˆ3 + (3 + O(5ˆ2))∗Tˆ4 + O(Tˆ5)

sage : E . p a d i c r e g u l a t o r (5 , 10)
5ˆ2 + 2∗5ˆ3 + 2∗5ˆ4 + 4∗5ˆ5 + 3∗5ˆ6 + 4∗5ˆ7

+ 3∗5ˆ8 + 5ˆ9 + O(5ˆ11)

sage : t ime E . p a d i c r e g u l a t o r (997 ,10)
CPU t imes : u s e r 0 .46 s , s y s : 0 .01 s , t o t a l : 0 .47 s
740∗997ˆ2 + 916∗997ˆ3 + 472∗997ˆ4 + 325∗997ˆ5 + 697∗997ˆ6

+ 642∗997ˆ7 + 68∗997ˆ8 + 860∗997ˆ9 + 884∗997ˆ10 + O(997ˆ11)

Modular Symbols

Sage has the most general implementation of modular symbols available,
though much remains to be done:

sage : M = ModularSymbols (GammaH(1 3 , [3]) , we ight=4)
sage : p r i n t M. b a s i s ()
([Xˆ2 , (0 , 1)] , [Xˆ 2 , (0 , 7)] , [Xˆ 2 , (2 , 5)] , [Xˆ 2 , (2 , 8)] , . . .
sage : f a c t o r (c h a r po l y (M.T(2)))
(x − 7) ∗ (x + 7) ∗ (x − 9)ˆ2 ∗ (x + 5)ˆ2

∗ (xˆ2 − x − 4)ˆ2 ∗ (xˆ2 + 9)ˆ2
sage : d imens ion (M. c u s p i d a l s u b s p a c e ())
12
sage : [a . d imens ion () f o r a i n M. decompos i t i on (3)]
[1 , 1 , 2 , 2 , 4 , 4]

Will soon also have John Cremona’s specialized but insanely fast
implementation for weight 2 trivial character:

sage : import sage . l i b s . cremona . homspace as j c
sage : t ime M = j c . ModularSymbolsSpace (20014)
CPU t imes : u s e r 1 .72 s , s y s : 0 .13 s , t o t a l : 1 .84 s
sage : t ime t = M. he ck e ma t r i x (2 , c onv e r t=Fa l s e)
CPU t imes : u s e r 0 .79 s , s y s : 0 .53 s , t o t a l : 1 .33 s

Graph Theory: sometimes relevant to number theory

builds on NetworkX (Los Alamos’s Python graph library)
graph isomorphism testing – Robert Miller’s new implementation
databases
2d and 3d visualization

sage : D = graphs . Dodecahedra lGraph ()
sage : D. show3d ()

sage : E = D. copy ()
sage : gamma = SymmetricGroup (2 0) . random element ()
sage : E . r e l a b e l (gamma)
sage : D. i s i s o m o r p h i c (E)
True
sage : D. r a d i u s ()
5

Polynomial Arithmetic

Sage mostly currently uses NTL by default

Soon use FLINT extensively – world’s fastest univariate polynomial
arithmetic for essentially every bit size and degree (Bill Hart’s and David
Harvey).

sage : from sage . l i b s . f l i n t . fmpz po l y import Fmpz poly
sage : deg = 31 ; c=64
sage : f=Fmpz poly ([ZZ . random element (2ˆ c) f o r i n [1 . . deg +1]])
sage : g=Fmpz poly ([ZZ . random element (2ˆ c) f o r i n [1 . . deg +1]])
sage : t ime f o r i n x range (10ˆ5) : w = f ∗g
CPU t ime : 1 .55 s , Wal l t ime : 1 .67 s

PARI takes 9.85 seconds to do the exact same computation.

Sage wrapping NTL takes 9.24 seconds

Magma takes 4.68 seconds

Commutative Algebra

Very fast basic arithmetic for multivariate polynomials over Fq.

Fast Groebner basis computation and ideal operations

The Fateman benchmark:

sage : P.<x , y , z> = Po lynomia lR ing (GF(32003) , 3)
sage : p = (x + y + z + 1)ˆ20 # the Fateman f a s tmu l t benchmark
sage : q = p + 1
sage : t = cput ime ()
sage : r = p∗q
sage : cput ime (t)
0 .13

Magma takes 0.360 seconds to do the same calculation (both on linux 64-bit)

Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Shortcomings and Advantages

History of Sage

1997–1999 (Berkeley) HECKE – C++ (modular forms)

1999–2005 (Berkeley, Harvard) I wrote over 25,000 lines of Magma code.

But the languages, devel models, and quality standards of
Magma, Mathematica, and Maple are old-fashioned and
painful.

I need to be able to see inside and change anything in my
software in order to be the best in the world at my research.

For me, Magma is a bad long-term investment.

Feb 2005 I released SAGE-0.1

Feb 2006 UCSD SAGE Days 1 workshop – SAGE 1.0.

October 2006 U Washington SAGE Days 2 workshop.

March 2007 UCLA SAGE Days 3 workshop.

May 2007 First Sage NSF grant.

June 2007 U Washington SAGE Days 4 workshop.

October 2007 Clay Math Institute SAGE Days 5 workshop.

Now Heilbronn Institute SAGE Days 6

Now SAGE-2.8.12; well over 100 contributors to SAGE.

Do not reinvent the wheel:

Arithmetic GMP, MPFR, Givaro
Commutative Algebra SINGULAR (libSINGULAR)
Linear Algebra LinBox, M4RI, IML, fpLLL
Cryptosystems GnuTLS, PyCrypto
Integer Factorization FLINT-QS, ECM
Group Theory GAP
Combinatorics Symmetrica
Graph Theory NetworkX
Number Theory PARI, NTL, FLINT, mwrank
Numerical Computation GSL, Numpy, Scipy
Calculus, Symbolic Comp. Maxima, Sympy
Lattice Polytopes PALP
User Interface Sage Notebook, jsmath, Moin wiki, IPython
Graphics Matplotlib, Tachyon, libgd, Java3d
Networking Twisted
Databases ZODB, SQLite, Python Pickles
Programming Language Python, Cython (compiled)

A total of nearly 5 million lines of source code (several hundred person-years).

SAGE: Lots of new code

Unique lines of code and docstrings:

$ cat *.py */*.py ... */*/*/*.pxd |sort |uniq |wc -l

189082

Unique input lines of autotested examples:

$ cat *.py */*.py ... */*/*/*.pxd | grep "sage:"

| sort |uniq |wc -l

26711

Doctesting coverage:

$ sage -coverage .

...

Overall weighted coverage score: 34.3%

Total number of functions: 17424

MANY Upcoming Workshops

Jan 5–9, 2008: Sage Days 61
4 , AMS meeting in San Diego

(booth, sprints)

Feb 5–9, 2008: Sage Days 7, IPAM (confirmed and funded!)

Feb 29–March 4, 2008: Sage Days 8, UT Austin –
Quadratic Forms

June 2008: Sage Days 9 in Seattle (tentative)

August 2008: Sage Days 10 in Vancouver at SFU (tentative)
– organized by Nils Bruin

And many more...

Sage Development: Rapid but High Quality

1 All enhancement proposals, bug reports and tasks are available
on http://trac.sagemath.org.

2 All discussions happen in the open on public mailing lists and
on a public chat channel.

3 One stable release per week (!) on average: release often,
release early.

4 Code is refereed.

5 Several different release managers.

http://trac.sagemath.org

Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Shortcomings and Advantages

Shortcomings of Sage

1 There are currently probably less than a thousand serious
users of Sage; our goal is to have ten thousand serious users by
2009.

2 Sage is not of high enough quality yet.

3 Sage is sometimes much slower than Magma, Mathematica,
etc.

Advantages of Sage

1 only general purpose mathematics software that uses a
mainstream programing language.

2 genuinely allows you to use Maple, Mathematica, Magma, etc.,
all together.

3 more functionality out of the box than any other open
source mathematics software.

4 Sage has a large supportive and active community: active
mailing lists have well over 200 subscribers – “very positive
vibe”

5 Sage development is done in the open.

6 Sage is sometimes much faster than Magma, Mathematica,
etc.

A Quote from John Voight’s MIT Talk Last Month

John Voight

“Having seemingly eliminated every alternative, we turn to SAGE. SAGE
includes Pari, so it has number field arithmetic. It uses Python, which is a very
friendly modern (object-oriented) programming language. It is free. It
incorporates Cython, which easily allows one to write optimized C code for
repeated tasks.

Despite being a relatively new system (so some functionality is limited), since it
is open source it is easy to contribute yourself. For example, Carl Witty recently
wrote a package for fast real root isolation. So even though one must think
about issues like how best to coerce between a C int, a Python integer, and a
SAGE Integer, there is a very active development community willing to help!

It has the further advantage that there is a package for distributed computing
called DSage...”

Questions?

Thank You!

	Introduction
	Capabilities
	Examples
	How ?
	Shortcomings and Advantages

