Zeta functions of quartic K3 surfaces over \mathbb{F}_3

Edgar Costa

Dartmouth College

Explicit p-adic methods, 20th March 2016

Joint work with: David Harvey and Kiran Kedlaya

Setup

 $X\subset \mathbb{P}^3_{\mathbb{F}_q}:=\mathsf{a}$ quartic K3 surface, a smooth surface defined by

$$f(x_0,\ldots,x_3)=0,\quad \deg f=4,$$

Then

$$egin{aligned} \zeta_X(t) &:= exp\left(\sum_{a>0} rac{\#X(\mathbb{F}_{p^a})t^a}{a}
ight) \in \mathbb{Q}(t) \ &= rac{1}{(1-t)(1-qt)(1-q^2t)q^{-1}L(qt)}, \end{aligned}$$

$$L(t) \in \mathbb{Z}[t]$$
, $\deg L = 21$, $L(0) = q$ all roots on the unit circle.

Goal: Compute L(t) efficiently!

Existing algorithms for "generic" hypersurfaces

With *p*-adic cohomology:

- Lauder–Wan: $p^{2 \dim X + 2 + o(1)}$
- Abbott–Kedlaya–Roe: $p^{\dim X+1+o(1)}$
- Voight Sperber: $p^{1+\dim X\cdot(\text{failure to be sparse})+o(1)}$
- Lauder's deformation: $p^{2+o(1)}$.
- Pantratz Tuitman: $p^{1+o(1)}$
- C. Harvey Kedlaya: $p^{1+o(1)}$, $p^{1/2+o(1)}$, or $log^{4+o(1)}p$ on average.

Existing algorithms for "generic" hypersurfaces

With p-adic cohomology:

- Lauder–Wan: $p^{2 \dim X + 2 + o(1)}$
- Abbott–Kedlaya–Roe: $p^{\dim X+1+o(1)}$
- Voight Sperber: $p^{1+\dim X\cdot(\text{failure to be sparse})+o(1)}$
- Lauder's deformation: $p^{2+o(1)}$.
- Pantratz Tuitman: $p^{1+o(1)}$
- C. Harvey Kedlaya: $p^{1+o(1)}$, $p^{1/2+o(1)}$, or $log^{4+o(1)}p$ on average.

Without "using" p-adic cohomology or smoothness:

• Harvey: $p^{1+o(1)}$, $p^{1/2+o(1)}$, or $log^{4+o(1)}p$ on average.

C.-Harvey-Kedlaya quasi-linear implementation

Question

Question

What are the possible zeta functions for a smooth quartic surface over \mathbb{F}_p ?

p = 2
 Done! [Kedlaya–Sutherland]
 528,257 classes of smooth surfaces (of 1,732,564 classes)
 ~7.3 months CPU time (optimized) naive point counting.

Question

- p = 2
 Done! [Kedlaya–Sutherland]
 528,257 classes of smooth surfaces (of 1,732,564 classes)
 ~7.3 months CPU time (optimized) naive point counting.
- p = 3
 4,127,971,480 classes to consider!
 1 second per surface → 131 years of CPU time

Question

- p = 2
 Done! [Kedlaya–Sutherland]
 528,257 classes of smooth surfaces (of 1,732,564 classes)
 ~7.3 months CPU time (optimized) naive point counting.
- p = 3
 4,127,971,480 classes to consider!
 1 second per surface → 131 years of CPU time
 naive point count will not work!

Question

- p=2 Done! [Kedlaya–Sutherland] 528,257 classes of smooth surfaces (of 1,732,564 classes) \sim 7.3 months CPU time (optimized) naive point counting.
- p = 34,127,971,480 classes to consider! 1 second per surface \rightsquigarrow 131 years of CPU time
 - naive point count will not work!
 - Deformation method: 1s for a diagonal K3 surface [Pantratz Tuitman]

Question

- p = 2
 Done! [Kedlaya–Sutherland]
 528,257 classes of smooth surfaces (of 1,732,564 classes)
 ~7.3 months CPU time (optimized) naive point counting.
- p = 3
 4,127,971,480 classes to consider!
 1 second per surface → 131 years of CPU time
 - naive point count will not work!
 - Deformation method: 1s for a diagonal K3 surface [Pantratz Tuitman]
 - C.–Harvey–Kedlaya : almost 25 min

C.-Harvey-Kedlaya Implementation

Why is my code so slow for p = 3?

- Precision
- p-adic approximation of the Frobenius
- Number of reductions

Why is my code so slow for p = 3?

- Precision
- p-adic approximation of the Frobenius
- Number of reductions

How many p-adic digits we need to pin down the zeta function?

- $p > 42 \longrightarrow 2$ p-adic significant digits
- $p = 3 \longrightarrow 5$ p-adic significant digits

Why is my code so slow for p = 3?

- Precision
- p-adic approximation of the Frobenius
- Number of reductions

How many p-adic digits we need to pin down the zeta function?

- $p > 42 \longrightarrow 2$ *p*-adic significant digits
- $p = 3 \longrightarrow 5$ p-adic significant digits

Terms to reduce = O(p) matrix vector multiplications

- $p > 42 \longrightarrow \sim 4000$
- $p = 3 \longrightarrow \sim 130,00$

Yes!

Yes!

 \bullet We have the list of 4,127,971,480 surfaces \sim 145 days

Yes!

- \bullet We have the list of 4,127,971,480 surfaces \sim 145 days
- ullet Baby version implemented in SAGE \sim 7min per surface

Yes!

- \bullet We have the list of 4,127,971,480 surfaces \sim 145 days
- Baby version implemented in SAGE \sim 7min per surface
- No C version yet
 We estimate that should take about 0.5 seconds per surface.