Counting points using uniform p-adic integration

Immi Halupczok

University of Leeds

20th March 2016

Goal/motivation

- ightharpoonup Fix a variety V given by polynomials $f_1, \ldots, f_\ell \in \mathbb{Z}[\underline{x}]$ $(\underline{x} := (x_1, \ldots, x_n))$
- \triangleright For p prime and $r \in \mathbb{N}$:

$$N_{p^r} := \#V(\mathbb{Z}/p^r\mathbb{Z}) = \#\{\underline{x} \in (\mathbb{Z}/p^r\mathbb{Z})^n \mid f_1(\underline{x}) = \cdots = f_\ell(\underline{x}) = 0\}$$

ho The **Poincaré series** is: $P_{V,p}(Z) := \sum_{r=0}^{\infty} N_{p^r} Z^r \in \mathbb{Z}[[Z]]$

Theorem (Denef, Igusa, Meuser; 80s)

$$P_{V,p}(Z) \in \mathbb{Q}(Z)$$

Theorem (Denef, Loeser, Macintyre, Pas; later)

"Uniformity in p": For $P_{V,p}(Z) = \frac{g_p(Z)}{h_p(Z)}$:

- \triangleright degree of $g_p(Z)$, $h_p(Z)$ bounded
- \triangleright description of how the coefficients of g_p and h_p can depend on p

This talk: a proof of this using uniform p-adic integration (pprox motivic integration)

Expressing things using the *p*-adic measure

- ▷ (Recall: variety V fixed)
- $\triangleright N_{p^r} = \#V(\mathbb{Z}/p^r\mathbb{Z}) = \#V(\mathbb{Z}_p/p^r\mathbb{Z}_p)$
- $\triangleright X_r := \{\underline{x} \in \mathbb{Z}_p^n \mid v(\underline{f}(\underline{x})) \geq r\}$ is a union of translates of $B_r := (p^r \mathbb{Z}_p)^n$
- $\triangleright N_{p^r}$ = number of translates of B_r covering X_r

$$=\mu(X_r)/\underbrace{\mu(B_r)}_{=p^{-n\cdot r}}\qquad (\mu: \text{ induced by Haar measure on } \mathbb{Q}_p \text{ with } \mu(\mathbb{Z}_p)=1)$$

- \triangleright Thus: Goal: understand $r \mapsto \mu(X_r)$
- ▷ A variant:
 - $\triangleright \tilde{N}_{p^r} = \text{number of points of } V(\mathbb{Z}_p/p^r\mathbb{Z}_p) \text{ that lift to } V(\mathbb{Z}_p)$ $= \text{number translates of } B_r \text{ needed to cover } V(\mathbb{Z}_p)$ $= \mu(\tilde{X}_r)/\mu(B_r) \qquad \text{where } \tilde{X}_r = \{\underline{x} + \underline{x}' \mid \underline{x} \in V(\mathbb{Z}_p), \underline{x}' \in B_r\}$
- ▶ The following includes both versions and much more:

Theorem

Suppose X_r is a definable family of subsets of \mathbb{Q}_p^n , parametrized by $r \in \mathbb{N}$.

Then
$$\sum_{r=0}^{\infty} \mu(X_r) Z^r \in \mathbb{Q}(Z)$$
.

Need to define "definable family"...

The Denef–Pas language

A definable set is a set given by a Denef-Pas formula.

A definable family of sets is a family of sets given by a Denef-Pas formula.

Example:
$$\tilde{X}_r = \{\underline{x} + \underline{x}' \mid \underline{x} \in V(\mathbb{Z}_p), \underline{x}' \in B_r\}$$

$$= \{\underline{\tilde{x}} \in \mathbb{Q}_p^n \mid \phi(\underline{\tilde{x}}, r) \text{ holds}\}, \text{ where}$$

$$\phi(\underline{\tilde{x}}, r) = \exists \underline{x} \colon (f_1(\underline{x}) = 0 \land \cdots \land f_\ell(\underline{x}) = 0 \land v(x_1 - \tilde{x}_1) \ge r \land \cdots \land v(x_n - \tilde{x}_n) \ge r)$$

Denef-Pas formula

A Denef-Pas formula is a mathematical expression built as follows:

- b three sorts of variables: valued field vars, residue field vars, value group vars
- ▷ build terms:
 - \triangleright in the valued field and the residue field: use $+, -, \cdot$ and constants from $\mathbb Z$
 - \triangleright in the value group: use +, -, 0
 - \triangleright v: valued field \rightarrow value group,
 - ac: valued field \rightarrow residue field (ac = angular component map)
- $\,dash\,$ build equations $(t_1=t_2)$ and, in the value group, inequations $(t_1>t_2)$
- \triangleright apply boolean combinations and quantifiers \forall , \exists

Note: Formulas work uniformly in p

A **definable function** is a function whose graph is a definable set.

Uniform *p*-adic integration

- \triangleright Introduce "motivic functions": expressions for functions $X \to \mathbb{R}$, where X is a definable set.
- \triangleright **Uniform** *p*-adic integration = symbolic integration of such expressions

Example:
$$X = \{(x, r) \in \mathbb{Q}_p \times \mathbb{Z} \mid \underbrace{0 \le v(x) < r}_{\text{Denef-Pas formula}} \}, f(x, r) = \underbrace{p^{v(x)}}_{\text{motivic function}}$$

$$\Rightarrow g(r) := \int_{X_r} f(x, r) \, dx = \underbrace{\frac{p-1}{p} \cdot r}_{\text{motivic function}}$$

- ▶ A **motivic functions** is a linear combination of products of:
 - $\triangleright x \mapsto \mathbf{1}_Z(x)$ for a definable set Z
 - $\triangleright \underline{x} \mapsto p^{f(\underline{x})}$ for f a definable function into the value group
 - $\triangleright x \mapsto f(x)$ for f a definable function into the value group
 - ▷ A few others...
- Note: p is also a symbol, so this integration indeed treats all \mathbb{Q}_p uniformly... but in some versions only for p sufficiently big
- \triangleright A key ingredient to make such symbolic integration possible: "Cell decomposition": a precise description of definable subsets of \mathbb{Q}_p
- Note: The same symbolic integration applied in other valued fields yields motivic integration

Application to our goal

- ▷ Recall:
 - Given a definable family of sets $X_r \subseteq \mathbb{Q}_p^n$, parametrized by $r \in \mathbb{N}$, understand $r \mapsto \mu(X_r)$.
- $\triangleright \mu(X_r) = \int_X 1d\underline{x}$, so $\mu(X_r) = f(r)$ for some motivic function f.
- \triangleright We now need to prove: For motivic $f: \mathbb{N} \to \mathbb{R}$, we have $\sum_r f(r)Z^r \in \mathbb{Q}(Z)$
- ▶ This is rather easy, using:
 - hd motivic functions on $\mathbb Z$ are given in terms of definable functions $\mathbb Z o \mathbb Z$
 - ightharpoonup definable functions $\mathbb{Z} o \mathbb{Z}$ are well understood (cf. Presburger arithmetic)

Thanks for your attention.