p-adic *L*-function in Sage

Christian Wuthrich

March 22, 2016

A good ordinary example

Let *E* be the following curve

sage : e = EllipticCurve('446d1'); p=5; show(e)
$$y^2 + xy = x^3 - x^2 - 4x + 4$$

A good ordinary example

Let E be the following curve

```
sage : e = EllipticCurve('446d1'); p=5; show(e) y^2 + xy = x^3 - x^2 - 4x + 4
```

It has rank 2 and good ordinary reduction at p = 5.

```
sage : e.rank()
2
```

But it has anomalous reduction

```
sage : e.Np(p)
10
```

But it has anomalous reduction

```
sage : e.Np(p)
10
```

with Tamagawa numbers

```
sage : e.tamagawa_numbers()
[2,1]
```

But it has anomalous reduction

```
sage : e.Np(p)
10
```

with Tamagawa numbers

```
sage : e.tamagawa_numbers()
[2,1]
```

and no torsion point in $E(\mathbb{Q})$.

```
sage : tors= e.torsion_order();tors
1
```

sage : lp = e.padic_lseries(p); lps =
lp.series(5,prec=7); lps
$$O(5^7) + O(5^4) \cdot T + (5+5^2+3\cdot5^3+O(5^4)) \cdot T^2 \\ + (2\cdot5+3\cdot5^2+3\cdot5^3+O(5^4)) \cdot T^3 \\ + (4\cdot5^2+4\cdot5^3+O(5^4)) \cdot T^4 \\ + (4\cdot5+4\cdot5^2+O(5^3)) \cdot T^5 \\ + (1+2\cdot5+5^2+O(5^3)) \cdot T^6 + O(T^7)$$

sage : lp = e.padic_lseries(p); lps =
lp.series(5,prec=7); lps
$$O(5^7) + O(5^4) \cdot T + (5+5^2+3\cdot5^3+O(5^4)) \cdot T^2 \\ + (2\cdot5+3\cdot5^2+3\cdot5^3+O(5^4)) \cdot T^3 \\ + (4\cdot5^2+4\cdot5^3+O(5^4)) \cdot T^4 \\ + (4\cdot5+4\cdot5^2+O(5^3)) \cdot T^5 \\ + (1+2\cdot5+5^2+O(5^3)) \cdot T^6 + O(T^7)$$

• Here we used a Riemann sum on $\mathbb{Z}_p^{\times} = \bigsqcup (a + p^5 \mathbb{Z}_p)$.

sage : lp = e.padic_lseries(p); lps =
lp.series(5,prec=7); lps
$$O(5^7) + O(5^4) \cdot T + (5+5^2+3\cdot5^3+O(5^4)) \cdot T^2 \\ + (2\cdot5+3\cdot5^2+3\cdot5^3+O(5^4)) \cdot T^3 \\ + (4\cdot5^2+4\cdot5^3+O(5^4)) \cdot T^4 \\ + (4\cdot5+4\cdot5^2+O(5^3)) \cdot T^5 \\ + (1+2\cdot5+5^2+O(5^3)) \cdot T^6 + O(T^7)$$

- Here we used a Riemann sum on $\mathbb{Z}_p^{\times} = \bigsqcup (a + p^5 \mathbb{Z}_p)$.
- We have $\operatorname{ord}_{T=0} \mathcal{L}_p(E,T) \leqslant 2$.

sage : lp = e.padic_lseries(p); lps =
lp.series(5,prec=7); lps
$$O(5^7) + O(5^4) \cdot T + (5+5^2+3\cdot5^3+O(5^4)) \cdot T^2 \\ + (2\cdot5+3\cdot5^2+3\cdot5^3+O(5^4)) \cdot T^3 \\ + (4\cdot5^2+4\cdot5^3+O(5^4)) \cdot T^4 \\ + (4\cdot5+4\cdot5^2+O(5^3)) \cdot T^5 \\ + (1+2\cdot5+5^2+O(5^3)) \cdot T^6 + O(T^7)$$

- Here we used a Riemann sum on $\mathbb{Z}_p^{\times} = \bigsqcup (a + p^5 \mathbb{Z}_p)$.
- We have $\operatorname{ord}_{T=0} \mathcal{L}_p(E,T) \leqslant 2$.
- The leading term has valuation 1.

sage : lp = e.padic_lseries(p); lps =
lp.series(5,prec=7); lps
$$O(5^7) + O(5^4) \cdot T + (5+5^2+3\cdot5^3+O(5^4)) \cdot T^2 \\ + (2\cdot5+3\cdot5^2+3\cdot5^3+O(5^4)) \cdot T^3 \\ + (4\cdot5^2+4\cdot5^3+O(5^4)) \cdot T^4 \\ + (4\cdot5+4\cdot5^2+O(5^3)) \cdot T^5 \\ + (1+2\cdot5+5^2+O(5^3)) \cdot T^6 + O(T^7)$$

- Here we used a Riemann sum on $\mathbb{Z}_p^{\times} = ||(a + p^5 \mathbb{Z}_p)||$.
- We have $\operatorname{ord}_{T=0} \mathcal{L}_p(E,T) \leqslant 2$.
- The leading term has valuation 1.
- The sixth coefficient is a unit.

$$\operatorname{Reg}_p(E/\mathbb{Q})/\log(\gamma)^2$$

evaluates to

$$\operatorname{Reg}_p(E/\mathbb{Q})/\log(\gamma)^2$$

evaluates to

```
sage : reg = e.padic_regulator(p);R = Qp(p,10);lg = log(R(1+p)); reg = R(reg)/lg^2; reg 2 \cdot 5^{-1} + 4 + 3 \cdot 5 + 2 \cdot 5^2 + 5^4 + 5^5 + 2 \cdot 5^6 + 3 \cdot 5^7 + O(5^8)
```

$$\operatorname{Reg}_p(E/\mathbb{Q})/\log(\gamma)^2$$

evaluates to

```
sage : reg = e.padic_regulator(p);R = Qp(p,10);lg = log(R(1+p));reg = R(reg)/lg^2;reg 2 \cdot 5^{-1} + 4 + 3 \cdot 5 + 2 \cdot 5^2 + 5^4 + 5^5 + 2 \cdot 5^6 + 3 \cdot 5^7 + O(5^8)
```

Its valuation is -1; that is minimal for anomalous primes.

$$\operatorname{Reg}_p(E/\mathbb{Q})/\log(\gamma)^2$$

evaluates to

```
sage : reg = e.padic_regulator(p);R = Qp(p,10);lg = log(R(1+p));reg = R(reg)/lg^2;reg 2 \cdot 5^{-1} + 4 + 3 \cdot 5 + 2 \cdot 5^2 + 5^4 + 5^5 + 2 \cdot 5^6 + 3 \cdot 5^7 + O(5^8)
```

Its valuation is -1; that is minimal for anomalous primes. Kedlaya !!!!

```
sage : eps = (1-1/lp.alpha())^2;
lps[2]/eps/reg/e.tamagawa_product()*tors^2
1 + O(5^3)
```

```
sage : eps = (1-1/lp.alpha())^2;
lps[2]/eps/reg/e.tamagawa_product()*tors^2
1 + O(5^3)
```

• So $\coprod (E/\mathbb{Q})[5^{\infty}] = 0$.

```
sage : eps = (1-1/lp.alpha())^2;
lps[2]/eps/reg/e.tamagawa_product()*tors^2
1 + O(5^3)
```

- So $\coprod (E/\mathbb{Q})[5^{\infty}] = 0$.
- The *p*-adic BSD predicts $\# \coprod (E/\mathbb{Q}) \equiv 1 \pmod{125}$.

```
sage : eps = (1-1/lp.alpha())^2;
lps[2]/eps/reg/e.tamagawa_product()*tors^2
1 + O(5^3)
```

- So $\coprod (E/\mathbb{Q})[5^{\infty}] = 0$.
- The *p*-adic BSD predicts $\# \coprod (E/\mathbb{Q}) \equiv 1 \pmod{125}$.

```
sage : e.sha().an_padic(5,prec=7) 1 + O(5^5)
```

$$\mathcal{L}_5(E,T) = T \cdot \left((T+1)^5 - 1 \right) \cdot u$$

for some unit $u \in \Lambda^{\times}$.

$$\mathcal{L}_5(E,T) = T \cdot \left((T+1)^5 - 1 \right) \cdot u$$

for some unit $u \in \Lambda^{\times}$. It tells us $\mu = 0$ and $\lambda = 6$, but more

$$\mathcal{L}_5(E,T) = T \cdot \left((T+1)^5 - 1 \right) \cdot u$$

for some unit $u \in \Lambda^{\times}$. It tells us $\mu = 0$ and $\lambda = 6$, but more

• $rank(E(K_n)) = 2 + 4 = 6$ for all n > 0 and

$$\mathcal{L}_5(E,T) = T \cdot \left((T+1)^5 - 1 \right) \cdot u$$

for some unit $u \in \Lambda^{\times}$. It tells us $\mu = 0$ and $\lambda = 6$, but more

- $rank(E(K_n)) = 2 + 4 = 6$ for all n > 0 and
- $\coprod (E/K_n)[5^{\infty}]$ is finite of bounded order.

Further examples

```
1 + O(5^5)
389a1
         7 1 + O(7^5)
389a1
        11
           1 + O(11^5)
389a1
           1 + O(13^3)
        13
389a1
389a1
        17
           1 + O(17^3)
389a1
        19
            1 + O(19^3)
         5 1 + O(5^5)
433a1
433a1
            1 + O(7^5)
433a1
        11
            1 + O(11^3)
            1 + O(13^2)
433a1
        13
433a1
        17
            1 + O(17^3)
            1 + O(19^3)
433a1
        19
         5
446d1
            1 + O(5^4)
            1 + O(7^4)
446d1
446d1
        11
            1 + O(11^3)
446d1
        13
           1 + O(13^3)
        17
             1 + O(17^3)
446d1
```

... and then

```
sage : e.sha().an_padic(19) 1 + O(19)
```

gives a warning:

/usr/local/sage/.../polynomial_quotient_ring_element.py:391:

Extended gcd computations over p-adic fields are performed using the standard Euclidean algorithm which might produce mathematically incorrect results in some cases.

This issue is being tracked at http:

```
//trac.sagemath.org/sage_trac/ticket/13439.
```

Higher precision

 $\bullet \ \ \text{Higher precision} \rightarrow \text{Overconvergent guys}$

- $\bullet \ \, \text{Higher precision} \rightarrow \text{Overconvergent guys} \\$
- More curves

- $\bullet \ \, \text{Higher precision} \rightarrow \text{Overconvergent guys} \\$
- More curves → Numerical modular symbols

- $\bullet \ \ \text{Higher precision} \rightarrow \text{Overconvergent guys}$
- More curves → Numerical modular symbols
- More info

- Higher precision → Overconvergent guys
- More curves → Numerical modular symbols
- More info → use Kurihara

- Higher precision → Overconvergent guys
- More curves → Numerical modular symbols
- More info → use Kurihara
- More fields

- Higher precision → Overconvergent guys
- More curves → Numerical modular symbols
- More info → use Kurihara
- More fields → twist by characters

- Higher precision → Overconvergent guys
- More curves → Numerical modular symbols
- More info → use Kurihara
- More fields → twist by characters
- More objects

- Higher precision → Overconvergent guys
- More curves → Numerical modular symbols
- More info → use Kurihara
- More fields → twist by characters
- More objects → class groups, cm, ab.var, . . .

- Higher precision → Overconvergent guys
- More curves → Numerical modular symbols
- More info → use Kurihara
- More fields → twist by characters
- More objects → class groups, cm, ab.var, . . .
- More approaches

- Higher precision → Overconvergent guys
- More curves → Numerical modular symbols
- More info → use Kurihara
- More fields → twist by characters
- More objects → class groups, cm, ab.var, . . .
- More approaches → Euler systems? . . . ?

Given *E* with nice, but large *N*. Compute $\int_r^\infty 2\pi i f(z) dz$

Given E with nice, but large N. Compute $\int_r^\infty 2\pi i f(z) dz$

Given E with nice, but large N. Compute $\int_r^\infty 2\pi i f(z) dz$

Given E with nice, but large N. Compute $\int_{r}^{\infty} 2\pi i f(z) dz$

```
sage : E = EllipticCurve([101,103]);
E.conductor().factor()

2<sup>3</sup> * 79 * 55793
```

```
sage : m=E.modular_symbol(method="num"); m(2/7) -1/2
```

 $[0]^{\pm}$ takes < 1 sec. $\{ [\frac{a}{5^2}] \}$, too. $[\frac{137}{731}]^{\pm}$ takes < 1 min

Kurihara's theorem

If ... then there is an effective way of computing integers m_i such that

$$\mathrm{III}(E/\mathbb{Q})[p^{\infty}] = \left(\mathbb{Z}/p^{m_1}\mathbb{Z}\right)^2 \oplus \cdots \oplus \left(\mathbb{Z}/p^{m_s}\mathbb{Z}\right)^2$$

Kurihara's theorem

If ... then there is an effective way of computing integers m_i such that

$$\mathrm{III}(E/\mathbb{Q})[p^{\infty}] = \left(\mathbb{Z}/_{p^{m_1}\mathbb{Z}}\right)^2 \oplus \cdots \oplus \left(\mathbb{Z}/_{p^{m_s}\mathbb{Z}}\right)^2$$

This uses Stickelberger elements

$$\Theta_m = \sum_{a \bmod^{\times} m} \left[\frac{a}{m} \right]^+ \sigma_a \in \mathbb{Q} \left[\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \right]$$

```
sage : any questions? ...
```