SDQEThe Sage Notebook admin Toggle | Home | Published | Log

Version 7.2

FlatSurf Demo 1

last edited Jun 10, 2016, 10:28:57 AM by admin
File... v | Action... Y |Data.. Y| sage v Typeset || Load 3-D Live [/ Use java for 3-D
Define the base field.

K.<sqrt2> = NumberField(x**2 - 2, embedding=1.414)

Note that sqrt2 now stores the actual square root of 2.

RR(sqrt2)
1.41421356237309

Constructing the regular octagon:

from flatsurf.geometry.polygon import Polygons

The following is the parent for polygons with coordinates in the field K.
Remarks:

o The first vertex of our polygons is always the origin.
o All our polygons are convex.

Polygons (K)

polygons with coordinates in Number Field in sqrt2 with defining
polynomial x"2 - 2

| Settings |

Help

| ReportaProblem | Sign out

Sawe | Sawe & quit

To construct a polygon, use the parent to build the parent. Passing a list of edge vectors will produce the polygon. The edge vectors must sum to zero.

p = Polygons(K)([(1,0),
(sqrt2/2, sqrt2/2),
(0, 1),

(- sqrt2/2 sqrt2/2),
(-1,0),

(-sqrt2/2 -sqrt2/2),
(0, -1),

(sqrt2/2, -sqrt2/2)
1)

print(p)

Polygon: (0, 0), (1, 0), (1/2*sqrt2 + 1, 1/2*sqrt2), (1/2*sqrt2 + 1,

1/2*sqrt2 + 1), (1, sqrt2 + 1), (0, sqrt2 + 1), (-1/2*sqrt2, 1/2*sqrt2 +

1), (-1/2*sqrt2, 1/2*sqrt2)

p.plot()

Discard & quit

http://localhost:8080/home/admin/14/
http://localhost:8080/home/admin/14/edit
http://localhost:8080/home/admin/14/text
http://localhost:8080/home/admin/14/revisions
http://localhost:8080/home/admin/14/share
http://localhost:8080/home/admin/14/publish
http://localhost:8080/home/admin
http://localhost:8080/pub
http://localhost:8080/settings
http://localhost:8080/logout
http://localhost:8080/

Defining a translation surface

A translation surface is a gluing of one or more polygons with edge identifications glued by translation.

We will construct the octagon with opposite edges identified. Edges of our polygons are indexed by [0, 1,2, ...,n — 1]|where n is the number of sides of the polygon. An edge
of a polygon is indexed by a pair (p, e)| where p|is a polygon index and el is an edge index.

The gluings are specified as a list of pairs of edges of polygons. For example we want to the bottom edge (0, 0)|to the top edge (0, 4)|

from flatsurf import *

Define a surface built from polygons with vertices in KA2.

surface = Surface_list(K)

We add the polygon p to the surface. It gets a label, in this case 0.

surface.add polygon(p)

0

We now glue the edges together. The line below says "glue edge e of polygon 0 to edge e+4 of polygon 0."

for e in range(4):
surface.change edge gluing(0,e,0,e+4)

We want to view the surface we built as a translation surface.

s=TranslationSurface(surface)

Run some tests to make sure the surface is okay.

TestSuite(s).run(verbose=True)

running . test base label() . . . pass

running . test base ring() . . . pass

running . test category() . . . pass

running . test edge matrix() . . . pass

running . test gluings() . . . pass

running . test not implemented methods() . . . pass
running . test override() . . . pass

running . test pickling() . . . pass

running . test polygons() . . . pass

Graphical surfaces:

A graphical surface is a version of a surface which stores some extra data that can be used to draw the surface.

|gs=s.graphica1_surface()

|gs.plot()

Straight-line flow

Construct the tangent vector in polygon 0 based at (0,0) pointed pointed in direction (1,2).

v=s.tangent vector(0,(0,0),(1,2))
print(v)

SimilaritySurfaceTangentVector in polygon 0 based at (0, 0) with vector

(1, 2)

You can convert the tangent vector to a StraightLineTrajectory, which is a finite list of intersections of the straight-line trajectory with the polygons defining the surface.

|traj=v.straight_line_trajectory()

|print traj

Straight line trajectory made of 1 segments from (0, 0) in polygon 0 to
(1/3*sqrt2 + 2/3, 2/3*sqrt2 + 4/3) in polygon 0

|gs.plot()+traj.graphical_trajectory(gs).plot()

The flow(n) method constructs the next n segments obtained by straight-line flowing forward and intersecting with the provided polygons. It will just stop if a singularity is hit.

traj.flow(100)
print(traj)
print("It has length: "+str(traj.combinatorial length()))

Straight line trajectory made of 17 segments from (0, 0) in polygon 0 to
(0, sqrt2 + 1) in polygon 0
It has length: 17

traj.is saddle connection()

True

We can draw a picture of this saddle connection by converting it to a GraphicalStraightLine Trajectory.

|gtraj = traj.graphical trajectory(gs)

|gs.plot()+gtraj.plot()

