
SymPy - Python library for symbolic mathematics

Onďrej Čert́ık

Institute of Physics, Academy of Sciences of the Czech Republic

February 29, 2008

Onďrej Čert́ık SymPy

Introduction

Contens of this talk:

Review of the current state:

History
Different approaches to symbolic manipulation we tried
Symbolic limits
Integration with SAGE

Future

where to go from here
our priorities and principles

Onďrej Čert́ık SymPy

SymPy

A Python library for symbolic mathematics

http://code.google.com/p/sympy/

>>> from sympy import Symbol, limit, sin, oo
>>> x=Symbol("x")
>>> limit(sin(x)/x, x, 0)
1
>>> integrate(x+sinh(x), x)
>>> (1/2)*x**2 + cosh(x)

Onďrej Čert́ık SymPy

SymPy

What SymPy can do

basics (expansion, complex numbers, differentiation, taylor
(laurent) series, substitution, arbitrary precision integers,
rationals and floats, pattern matching)

noncommutative symbols

limits and some integrals

polynomials (division, gcd, square free decomposition,
groebner bases, factorization)

symbolic matrices (determinants, LU decomposition...)

solvers (some algebraic and differential equations)

2D geometry module

plotting (2D and 3D)

Onďrej Čert́ık SymPy

Motivation

Why?

There are people who want to develop it, so it will be
developed. :)

BSD licensed (like SciPy and NumPy) → use it how you want

small, pure python → easily include it your own projects

It’s in Debian, Ubuntu, Gentoo, Arch, Sage, ...

Onďrej Čert́ık SymPy

Motivation

Why?

There are people who want to develop it, so it will be
developed. :)

BSD licensed (like SciPy and NumPy) → use it how you want

small, pure python → easily include it your own projects

It’s in Debian, Ubuntu, Gentoo, Arch, Sage, ...

Onďrej Čert́ık SymPy

Motivation

Why?

There are people who want to develop it, so it will be
developed. :)

BSD licensed (like SciPy and NumPy) → use it how you want

small, pure python → easily include it your own projects

It’s in Debian, Ubuntu, Gentoo, Arch, Sage, ...

Onďrej Čert́ık SymPy

SymPy

Other symbolic manipulation software: GiNaC, Giac, Qalculate,
Yacas, Eigenmath, Axiom, PARI, Maxima, SAGE, Singular,
Mathomatic, Octave, ...
Problems:

all use their own language (except GiNaC, Giac and SAGE)

GiNaC and Giac still too complicated (C++), difficult to
extend

What we want

Python library and that’s it (no environment, no new
language, nothing)

Rich funcionality

Pure Python (non Python modules could be optional) – works
on Linux, Windows, Mac out of the box

Onďrej Čert́ık SymPy

SymPy console

Acutally, I didn’t tell the full truth, we have one nice thing –
isympy:

$ bin/isympy
Python 2.4.4 console for SymPy 0.5.6-hg. These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z = symbols(’xyz’)
>>> k, m, n = symbols(’kmn’, integer=True)

In [1]: integrate(ln(x), x)
Out[1]: -x + x*log(x)

Onďrej Čert́ık SymPy

Unicode prettyprinting

Recent changes in isympy:

pretty printing by default

use unicode printing if
available

Onďrej Čert́ık SymPy

SAGE

aims to glue together every useful open source mathematics
software package and provide a transparent interface to all of
them

http://www.sagemath.org/

More on relationship between SAGE and SymPy later

sage: limit(sin(x)/x, x=0)
1
sage: integrate(x+sinh(x), x)
cosh(x) + x^2/2

In [1]: limit(sin(x)/x, x, 0)
Out[1]: 1

In [2]: integrate(x+sinh(x), x)
Out[2]: (1/2)*x**2 + cosh(x)

Onďrej Čert́ık SymPy

History I

In 2005, I wanted to use symbolic mathematics in Python

pyginac used boost-python, very slow compilation (30s per
file),

I wrote swiginac together with Ola Skavhaug in SWIG, it
works, but too difficult to extend the GiNaC core behind it

Is it really that difficult to have a system, that can calculate
all I need and still be easy to extend?

Let’s reinvent the wheel for the 35th time.

Onďrej Čert́ık SymPy

History II

end of summer 2005: I implemented my first code, mostly
translating ideas from GiNaC to Python.

spring 2006: I discovered the Gruntz algorithm for limits

end of summer 2006: I implemented limits in SymPy

February 2007: Fabian Seoane joined and this was the boost
to SymPy’s development

Google Summer of Code, SymPy is under the umbrella of
Python Software Foundation, the Space Telescope Science
Institute and Portland State University

Onďrej Čert́ık SymPy

Contributions

Fabian: everything, without him, SymPy wouldn’t be here

Mateusz (GSoC): concrete math, symbolic integration, many
bugfixes

Jason (GSoC): geometry, a lot of bugfixes

Robert (GSoC): polynomials (groebner basis et al.)

Brian (GSoC): plotting

Chris (GSoC): linear algebra

Pearu: new core (10x to 100x speedup)

Fredrik: fast floating point arithmetics in pure Python (faster
than Decimal)

Jurjen: pretty printing

Kirill: unicode printing, a lot of bugfixes

others: bug reports, bug fixes

Onďrej Čert́ık SymPy

Approaches we tried I

GiNaC ”.eval()” approach, without their ”ex” class:

classes: Basic, Add, Mul, Pow, Rational, Funcion (sin, cos,
exp, log)

Example:

x + y + x → Add(Add(Symbol(”x”), Symbol(”y”)),
Symbol(”x”))

e = Add(Add(x, y), x)
e.eval()

”e” becomes Add(Mul(2, x), y)

Disadvantages:

User has to call ”.eval()” by hand

Wasteful construction of instances

Onďrej Čert́ık SymPy

Approaches we tried II

Automatic evaluation of ”.eval()”:

classes: Basic, Add, Mul, Pow, Rational, Funcion (sin, cos,
exp, log)

Example:

x + y + x → Add(Add(Symbol(”x”), Symbol(”y”)),
Symbol(”x”))

e = Add(Add(x, y), x)

”e” becomes Add(Mul(2, x), y) automatically

Disadvantages:

Wasteful construction of instances

Onďrej Čert́ık SymPy

Approaches we tried III

Not using ”.eval()” at all, simplify immediatelly in ” new ”

classes: Basic, Add, Mul, Pow, Rational, Funcion (sin, cos,
exp, log)

Example:

x + y + x → Add(Add(Symbol(”x”), Symbol(”y”)),
Symbol(”x”))

e = Add(Add(x, y), x)

”e” becomes Add(Mul(2, x), y) immediatelly, no intermediate
classes constructed

Onďrej Čert́ık SymPy

Approaches we tried IV

How to deal with functions:

Sin, ApplySin, Cos, ApplyCos, ...

one class to represent a function (sin)
another class to represent ”applied” function (sin(x))
SAGE way

sin, cos, ...

just one class to represent a function (sin)
instance of this class to represent ”applied” function (sin(x))
SymPy way

We decided to use the second option. Why?

all logic is in one class, easy to extend and understand

the less classes, the better

Onďrej Čert́ık SymPy

the Schwarzschild solution in the General Relativity

spherically symmetric metric (diag(−eν(r), eλ(r), r2, r2 sin2 θ)) →
Christoffel symbols → Riemann tensor → Einstein equations →
solver

ondra@pc232:~/sympy/examples$ time python relativity.py
...
[SKIP]
...
--
metric:
-C1 - C2/r 0 0 0
0 1/(C1 + C2/r) 0 0
0 0 r**2 0
0 0 0 r**2*sin(\theta)**2

real 0m1.092s
user 0m1.024s
sys 0m0.068s

Onďrej Čert́ık SymPy

Symbolic limits

Gruntz algorithm

the algorithm is so simple that everyone should know how it
works :)

Onďrej Čert́ık SymPy

Comparability classes

L ≡ lim
x→∞

log |f (x)|
log |g(x)|

We define <, >, ∼:

f > g when L = ±∞
f is greater than any power of g
f is more rapidly varying than g
f goes to ∞ or 0 faster than g

f < g when L = 0

f is lower than any power of g
...

f ∼ g when L 6= 0,±∞
both f and g are bounded from
above and below by suitable integral
powers of the other

Examples:

2 < x < ex < ex2
< eex

2 ∼ 3 ∼ −5

x ∼ x2 ∼ x3 ∼ 1

x
∼ xm ∼ −x

ex ∼ e−x ∼ e2x ∼ ex+e−x

f (x) ∼ 1

f (x)

Onďrej Čert́ık SymPy

The Gruntz algorithm I

f (x) = ex+2e−x − ex +
1

x

lim
x→∞

f (x) = ?

Strategy:

mrv set: the set of most rapidly varying subexpressions

{ex , e−x , ex+2e−x}
the same comparability class

take an item ω converging to 0 at infinity

ω = e−x

if not present in the mrv set, use the relation f (x) ∼ 1
f (x)

rewrite the mrv set using ω

{ 1
ω , ω,

1
ω e2ω}

substitute back in f (x) and expand in ω:

f (x) = 1
x −

1
ω + 1

ω e2ω = 2 + 1
x + 2ω + O(ω2)

Onďrej Čert́ık SymPy

The Gruntz algorithm II

Crucial observation: ω is from the mrv set, so

f (x) = ex+2e−x − ex +
1

x
= 2 +

1

x
+ 2ω + O(ω2)→ 2 +

1

x

We iterate until we get just a number, the final limit

Gruntz proved this always works and converges in his Ph.D.
thesis

Generally:

f (x) = · · ·︸︷︷︸
∞

+
C−2(x)

ω2︸ ︷︷ ︸
∞

+
C−1(x)

ω︸ ︷︷ ︸
∞

+C0(x) + C1(x)ω︸ ︷︷ ︸
0

+ O(ω2)︸ ︷︷ ︸
0

we look at the lowest power of ω

the limit is one of: 0, limx→∞ C0(x), ∞
Onďrej Čert́ık SymPy

Integration with SAGE

From SymPy to SAGE:

using ” sage ()” methods:

From SAGE to SymPy:

using ” sympy ()” methods:

Why SymPy in SAGE? Isn’t Maxima good enough?

pure Python

easily extensible (the main reason I started SymPy), at least
we try :)

small, people can easily use it without SAGE (which is big)

options are always good

Onďrej Čert́ık SymPy

The question of speed

Being pure Python has many advantages

speed is good enough for many purposes

sympycore project tries to speed SymPy even more

later, when internals of SymPy settle some more, use C++, C
or maybe Cython.

Onďrej Čert́ık SymPy

Current state and future

Now what?

Fix bugs (there are still too many)

Try to make most of the common tasks easy to do:

Playing with defined and undefined functions (diff(f(x), x))
most of the integrals, limits, differential/algebraic equations
should work

Collaborate with SAGE, implement only things, that are
needed

Onďrej Čert́ık SymPy

Principles

Linus

Talk is cheap. Show me the code.

Have something now, not tomorrow

Strictly following the Zen of Python (”import this” in Python)

Every single feature in SymPy must have tests

Main hg version always needs to pass all tests

Onďrej Čert́ık SymPy

