
Numbers in Sage
http://www.sagemath.org

William Stein1

1Department of Mathematics
University of Washington, Seattle

Sage Days 8 at Enthought, February 29, 2008

http://www.sagemath.org

Contents

Prelude

Rings and Fields

Polynomials

Matrices

Outline

Prelude

Rings and Fields

Polynomials

Matrices

Welcome to Sage Days 8!

Enthought and Sage: Huge Potential for Collaboration

The goal of Sage is to create a viable free open source
alternative to Maple, Mathematica, Matlab, and Magma.

General and Advanced Pure and Applied Mathematics:

“Use SAGE for studying a huge range of mathematics,
including algebra, calculus, elementary to very advanced
number theory, cryptography, numerical computation,
commutative algebra, group theory, combinatorics, graph
theory, and exact linear algebra.”

This Talk: Sage’s Core Arithmetic

I This talk is about core arithmetic functionality in Sage that
supports the algebraic side of mathematical computation.

I This is the foundation of “pure” research mathematics
computation, and it is where much Sage development is
currently focused.

I It’s functionality that up until now only Magma did really
well (certainly not Maple, Mathematica, Matlab, or any single
open source program).

I Relevant for numerical computation? Don’t know. Numerical
computation is very relevant to “pure” research mathematics.

Outline

Prelude

Rings and Fields

Polynomials

Matrices

It all starts with...
GMP: Gnu Multiprecision Library

1. GMP is about 150,000 lines of code.

2. Optimized arbitrary precision arithmetic with integers and
rationals.

3. GMP currently ships with Mathematica, Maple, Magma, etc.
– nobody has consistently done better than GMP.

4. Almost all algebraic libraries depend on GMP.

5. We might be forced into forking GMP because of:
I their move to LGPL v3,
I the (un)health of the GMP community (anti-Mac, extorsion

for patches, poor release cycle, etc.),
I impressive progress on fast arithmetic by Sage developers, and
I others reasons I won’t mention here.

See http://mpir.org.

http://mpir.org

A Note About Benchmarks in this Talk

I By default, benchmarks in this talk are under OS X 10.5
running 32-bit versions of the relevant software on a 2.6Ghz
Core 2 Duo Macbook Pro laptop.

I I also ran the benchmarks under 64-bit Linux with 64-bit
versions of software, and if the timings are drastically different,
mention it. (These were run in 64-bit Debian Linux under VMware

on the same 2.6Ghz Core 2 Duo, which has VTX and 2GB RAM.)

I I used Sage-2.10.3, Magma V2.14-9, Mathematica 6.0.1,
PARI 2.3.3, and Maple 11.

Multiplying Million Digit Integers?:
Sage (GMP) is over 50 times Faster than Python

sage: n = ZZ.random_element(10^1000000)
sage: m = ZZ.random_element(10^1000000)
sage: time a = n*m
CPU time: 0.13 s, Wall time: 0.14 s
sage: nn = int(n); mm = int(m)
sage: time a = nn*mm
CPU time: 6.86 s, Wall time: 6.91 s
sage: time n.gcd(m)
2
CPU time: 4.10 s, Wall time: 4.12 s
sage: 6.86 / 0.13
52.7692307692308

(Note: GMP is over 100 times faster than Python under 64-bit
Linux.)

Factorization, Arithmetic Functions: PARI, FLINT, New
code

sage: time factor(2^137 - 1)
32032215596496435569 * 5439042183600204290159
CPU time: 0.37 s, Wall time: 0.41 s

sage: time n = number_of_partitions(10^6)
CPU time: 0.03 s, Wall time: 0.03 s
sage: len(str(n))
1108

sage: time v = prime_range(10^7)
CPU time: 4.66 s, Wall time: 6.08 s
sage: len(v)
664579

MPFR: Multiprecision Floating Point Reals

1. About 55,000 lines of C code (LGPL, by Paul Zimmerman).

2. Optimized arbitrary precision arithmetic with real numbers.

3. Also very rigorous and 100% platform independent results.

4. MPFR currently ships with Magma – nobody has done better
than MPFR...

Multiplying a Hundred Thousand Digits of π:
MPFR is over 4000 times faster than Decimal

sage: R = RealField(3.32*10^5)
sage: a = R.pi()
sage: len(a.str())
99942
sage: time b = a*a
CPU time: 0.01 s, Wall time: 0.01 s

sage: import decimal
sage: PI = decimal.Decimal(a.str())
sage: time b = PI*PI
CPU time: 42.27 s, Wall time: 42.61 s
sage: 42.27 / 0.01
4227.00000000000

Quad Precision Reals

1. About 23,000 lines of C/C++ code, BSD license.

2. Quaddouble is part of Sage – provides real numbers with 216
bits of precision.

3. Simple data structure and fast arithmetic and trig functions.

4. A LAPACK built on this would be of interest to numerical
computation, and I think is in the works or done.

sage: RQDF
Real Quad Double Field
sage: a = RQDF(pi); a
3.14159265358979323846264338327950288419716939
9375105820974944590
sage: sin(a/2)
1.00
0000000000000000000

Multiprecision Floating Point Complex Numbers

Sage also has multiprecision floating point complex numbers
(built on MPFR) along with some multiprecision special functions.

sage: K.<I> = ComplexField(200) # 200 bits of precision
sage: a = K(pi) + I; a
3.1415926535897932384626433832795028841971693993751058209749
+1.00*I
sage: a.gamma_inc(2+5*I)
1.0486976320988281408799148165081638222108234688452799961068
-1.9239010448433085753898248495800053753881658954589692682543*I
sage: a.zeta()
1.0977390684282594480881320973507592738706227822476680574145
-0.12875465315005267463348616853060115143561047216473997227028*I
sage: a.arcsinh()
1.9046276869706578620372233641527072489817035862403811939698
+0.29558503421162990028572406892213528412745110063135493432292*I

MPFI: Multiprecision Interval Arithmetic

1. About 7,000 lines of C code (GPL’d); Sagified by C. Witty.

2. Builds on MPFR (which in turn builds on GMP).

3. Arithmetic and special functions with real intervals [a, b],
where a and b are multiprecision.

4. Comes to the rescue, e.g., Maxima’s symbolic ceil and floor
functions can be just plain wrong, and very hard to fix, since
Maxima does not have interval arithmetic; Sage’s are correct:

sage: maxima(factorial(50)/exp(1)).ceiling()
11188719610782480421414879249141773426630319
613740326700720324608
sage: ceil(factorial(50)/exp(1))
11188719610782480504630258070757734324011354
208865721592720336801

NOTE: Mathematica does this fine; Maple says “can’t do it”.

MPFI Demo

sage: R = RealIntervalField(53); R
Real Interval Field with 53 bits of precision
sage: a = cos(sin(pi^2 + e))^2 - sin(2)
sage: R(a)
[0.090239794310820853 .. 0.090239794310821742]
sage: float(a)
0.090239794310821408

Zero or not?

sage: b = float(10^(-16)); b
9.9999999999999998e-17
sage: b + 1 - 1
0.0
sage: c = RIF(10^(-16)); c
[9.9999999999999997e-17 .. 1.0000000000000002e-16]
sage: c + 1 - 1
[-0.00000000000000000 .. 2.2204460492503131e-16]

Finite Fields: NTL, Givaro, Pari

Now for something Very Algebraic.
Integers modulo p; finite fields.

sage: k.<a> = GF(3^2); k
Finite Field in a of size 3^2
sage: list(k)
[0, 2*a, a + 1, a + 2, 2, a, 2*a + 2, 2*a + 1, 1]
sage: x = a; y = (2*a+3); x*y
2*a + 2
sage: time for _ in xrange(10^6): c=x*y
CPU time: 0.46 s, Wall time: 0.46 s
sage: a = int(3); b = int(7); d = int(17)
sage: time for _ in xrange(10^6): c=(a*b)%d
CPU time: 0.33 s, Wall time: 0.34 s

(On Linux the two timings are identical.)

Number Fields: NTL, Pari

1. Number fields are what you get by “adjoining” a root of a
polynomial with rational coefficients to Q.

2. A huge deal in number theory.

sage: K.<a> = QQ[2^(1/3)]
sage: a
a
sage: a^3
2
sage: (1+a)^10
729*a^2 + 918*a + 1161

PARI provides much deep number field related functionality.

p-adic Numbers

1. p-adics are the number theorist’s analogue of the real
numbers, but where the metric is that rational numbers are
close if their difference is divisible by a large power of p.

2. The Sage p-adics are 100% new code (over 10,000 lines;
mostly by David Roe of Harvard).

3. There is a growing field of p-adic analysis (Kiran Kedlaya at
MIT). Relevant to cryptography...

Playing with p-adics

sage: K = pAdicField(5)
sage: a = K(-1); a
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + ...
sage: b = a.sqrt(); b
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + ...
sage: exp(a)
Traceback (most recent call last):
...
ValueError: series doesn’t converge
sage: exp(a-4)
1 + 4*5 + 2*5^2 + 5^3 + 3*5^4 + 2*5^6 + 4*5^7 + ...

Coercion

1. Problem: make good sense of a plus b (say) without requiring
explicit coercions or doing stupid ad hoc things.

2. Sage has a sophisticated coercion model, which resulted
from months of hard work over several years by many people.

3. Core ideas: Canonical morphisms; constructing objects via a
sequence of categorical operations.

4. Being actively rolled out right now; is vastly better for
arithmetic than Python’s builtin naive approach.

sage: R.<x> = PolynomialRing(ZZ); R
Univariate Polynomial Ring in x over Integer Ring
sage: f = x + 1/5; f
x + 1/5
sage: parent(f)
Univariate Polynomial Ring in x over Rational Field
sage: parent(2/1 + R(2))
Univariate Polynomial Ring in x over Rational Field

Outline

Prelude

Rings and Fields

Polynomials

Matrices

Polynomials

1. In Sage one can define univariate and multivariate polynomials
over any of the above rings.

2. In some cases arithmetic is blazingly fast; in others it isn’t.

3. Factoring multivariate polynomials – a basic problem in
computer algebra – is bizarely embarassingly slow in many
cases in all open source software. Magma is amazingly
good. We are actively working on this.

Univariate Polynomials: NTL, Pari, FLINT

We create a finite field, a polynomial ring over it, and a polynomial
ring over that polynomial ring.

sage: F.<a> = GF(9)
sage: R.<x> = F[]
sage: S.<y> = R[]; S
Univariate Polynomial Ring in y over Univariate Polynomial
Ring in x over Finite Field in a of size 3^2
sage: (a + x + y)^2
y^2 + (2*x + 2*a)*y + x^2 + 2*a*x + a + 1

NOTE: FLINT (part of Sage) does faster arithmetic in Z[x] than
anything else in the world; not “on” in Sage by default yet, but will
be soon. This can have a major impact on many other algorithms,
including large integer multiplication.

Multivariate Polynomials: Singular

For multivariate polynomials, we use a C-library interface that
Martin Albrecht (a Sage developer) wrote to the computer algebra
system Singular:

sage: R.<x,y,z> = QQ[]; R
Multivariate Polynomial Ring in x, y, z
over Rational Field
sage: time f = (1+x+y+z)^50
CPU time: 0.45 s, Wall time: 0.45 s
sage: len(str(f))
862380
sage: len(f.monomials())
23426

Groebner Basis

1. Groebner basis are the core algorithmic operation behind
much of commutative algebra and algebraic geometry.

2. Like echelon form but for commutative algebra.
3. Solves ideal membership: is a polynomial in an ideal?
4. Finds all common solutions to polynomial equations.
5. Magma usually computes GB’s faster than everything else.

Sage (=Singular) is faster than everything but Magma (?).

sage: P.<a,b,c> = PolynomialRing(QQ,3, order=’lex’)
sage: I = sage.rings.ideal.Katsura(P,3); I
(a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
sage: I.groebner_basis()
[c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c,
b + 30*c^3 - 79/7*c^2 + 3/7*c,
a - 60*c^3 + 158/7*c^2 + 8/7*c - 1]

sage: I.groebner_basis(algorithm="magma:GroebnerBasis")
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1,
b + 30*c^3 - 79/7*c^2 + 3/7*c,
c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]

Arbitrary Precision Root Finding

1. Sage can find roots of polynomials to arbitrary precision.
2. Sage can quickly isolate all real roots of a polynomial over

Q using a new algorithm/implementation of Carl Witty.

sage: R.<x> = QQ[]
sage: f = (x^97 + x - 1) * (x^15 - 5) * (x^37 + x^5 + 1)
sage: f.degree() # NOTE: plotting f is USELESS
149
sage: time f.real_root_intervals()
[((-21/20, -9/10), 1), ((9/10, 39/40), 1), ((21/20, 9/8), 1)]
CPU time: 0.03 s, Wall time: 0.03 s
sage: time f.roots(RealField(30))
[(-0.95705222, 1), (0.96579942, 1), (1.1132636, 1)]
CPU time: 0.05 s, Wall time: 0.07 s
sage: time f.roots(RealField(60))
[(-0.95705222094784803, 1), (0.96579942473411068, 1), (1.1132635768448034, 1)]
CPU time: 4.63 s, Wall time: 4.87 s
sage: time f.roots(RealField(100))
[(-0.95705222094784802534774579640, 1), (0.96579942473411067864377249600, 1), (1.1132635768448033941459872819, 1)]
CPU time: 13.02 s, Wall time: 13.48 s

Outline

Prelude

Rings and Fields

Polynomials

Matrices

Matrices in Sage

I will focus on dense matrices with EXACT entries, though
Sage also has sparse matrices, and some numerical matrices.

1. Many algorithms and questions in exact linear algebra are
very different than in numerical linear algebra.

2. No exact analogue of BLAS and LAPACK (maybe C. Pernet
will change that?)

3. Magma has for years been vastly superior to everything
else in the world. Sage is gaining ground (sometimes winning).

4. The whole point of matrices in Sage is different than numpy
ndarrays; this often causes confusion. In Sage, matrices are
algebraic objects – not data structures.

Exact Linear algebra libraries in Sage

1. Linbox: about 70,000 lines of C++; LGPL; C. Pernet is lead
developer; very good at some things, but there is a lot of
broken code – Sage picks and choses only the things that
work and does much external testing.

2. IML: a GPL’d C library that solves Ax = b over Q
3. M4RI: excellent linear algebra over F2 (field of order 2).

4. PARI and NTL: very naive linear algebra algorithms; ignores
most progress on exact linear algebra from the last decade.

5. We have written a lot of new code (about 15,000 lines).

A Matrix Example

sage: a = matrix(QQ, 2, [1, 2/3, 5/3, 1/2]); a
[1 2/3]
[5/3 1/2]
sage: parent(a)
Full MatrixSpace of 2 by 2 dense matrices
over Rational Field
sage: a^(-1)
[-9/11 12/11]
[30/11 -18/11]
sage: a.charpoly()
x^2 - 3/2*x - 11/18

Examples of Matrices over various rings

sage: a = random_matrix(GF(2),3); a
[0 0 1]
[1 0 0]
[1 1 0]
sage: a^10
[1 0 1]
[1 1 0]
[1 1 1]
sage: R.<x,y> = GF(7)[]
sage: a = matrix(R, 2, [y*x, x+3*y^3, x-y, x^3]); a
[x*y 3*y^3 + x]
[x - y x^3]
sage: time b = a^30
CPU time: 0.02 s, Wall time: 0.02 s
sage: len(str(b[0,0]))
14073

The rest of this talk... benchmarks

1. It is really easy to implement the standard exact linear algebra
algorithms naively in a way that is insanely slow.

2. The challenge is coming up with much better asymptotically
fast algorithms and implementing and optimizing them.

3. The rest of this talk will thus just discuss some benchmarks.

4. Conclusions of the benchmarks will be:
I Magma is extremely good when the numbers are small
I Sage is quite good when numbers are large
I Mathematica is terrible compared to Magma and Sage
I PARI isn’t very good either
I Maple is also poor at hard exact linear algebra (or I simply

don’t know how to use Maple!)
I Matlab: doesn’t do exact linear algebra?

Benchmark: Matrix Multiplication over Z

Let A be a random 500x500 integer matrix with entries between
−9 and 9. Compute B = A · A.

1. Magma: 0.17 seconds

2. Sage (our own code – not Linbox): 0.66 seconds

3. Mathematica: 2.23 seconds

4. PARI: 11.97 seconds

5. Maple: 25.3 seconds

Benchmark: Computing the Nullspace over Z

Let A be a random 301x300 integer matrix with entries between
−232 and 232. Compute the (left) nullspace of A. (This is
equivalent to solving Ax = b.)

1. Sage (uses IML’s p-adic nullspace): 1.107 seconds

2. Magma: 15.2 seconds.

3. PARI: Gave up after 4 minutes. (101x100 takes 12.8 seconds)

4. Mathematica: Gave up after several minutes (uses a LOT of
memory). (101x100 takes 3.55 s and Sage takes 0.12 s)

(1) Under Linux Sage is only 4 times faster than Magma; (2) Clement Pernet: For really large entries Linbox is

much faster than IML.

Benchmark: Hermite Normal Form over Z

Let A be a random 300x300 integer matrix with entries between
−232 and 232. Compute the Hermite normal form of A.

1. Sage (new code from Sage Days 7): 8.03 seconds

2. Magma: 34.370 seconds (under Linux, Magma takes only
twice as long as Sage)

Benchmark: Characteristic Polynomial over Z

Let A be a random 100x100 integer matrix with entries between
−232 and 232. Compute the characteristic polynomial of A.

1. Sage (via C. Pernet’s code in Linbox): 1.5 seconds

2. Magma: 3.64 seconds

3. Mathematica: 38.62 seconds

NOTE: Under Linux the situation is quite different!

1. Sage (Linux): 2.88 seconds

2. Magma: 0.61 seconds (!)

3. Mathematica: 69.93 seconds (!)

This is only 100× 100. In my research I care about much bigger
matrices...

Wrap Up

I And that’s my talk. There are many mathematical objects and
dozens of algorithms that I didn’t mention.

I Moral:
I This talk was about how Sage tackles much different problems

than either Scipy/Numpy or Maple/Mathematica, and is the
only program besides Magma to take this challenge seriously.

I Magma has limited numerical capabilities, so the combination
of Sage with Numpy/Scipy/R may have a broad impact on
pure research mathematics.

I This talk is about “algebraic stuff”, but that is not all that
Sage is about. Sage is about creating a viable alternative
to Magma, Maple, Mathematica, and Matlab, with the
help of a wide range of contributors from all over the
mathematical sciences.

	Prelude
	Rings and Fields
	Polynomials
	Matrices

