
Chapter 1: First steps in Python and Sage

Author: Vincent Delecroix
Author: Nadia Lafrenière
Author: Thierry Monteil
License: BY-NC-SA 3.0

The three golden rules

Recall from the introduction the three most import things

First, to execute a cell on which you have the focus press Shift-Enter.

Second, to access the documentation add a question mark ? at the end and press enter

sage: is_prime?

Third, to obtain the list of methods that starts with a given prefix, press the tab key:

sage: is_pr

Objects, functions, methods

Most names in Sage are either in snake case like bernoulli, is_prime, cos, ... or camel case like VectorSpace,
PolynomialRing, Matrix, ... The snake case notation is mostly reserved to functions

sage: bernoulli(13)
0

sage: is_prime(73)
True

sage: cos(pi/3)
1/2

While camel case are often objects, that is to say after calling it you obtain an object that you can query further:

sage: K = GF(5) # the field with 5 elements
....: K.cardinality() # size of K
5

sage: V = VectorSpace(K, 3) # vector space K^3
....: V.cardinality() # size of V
125

Note that in the above example we used K.cardinality() that actually meant cardinality(K). Though
in many programming languages like Python functions are bind to objects. In this situation they are named
methods. Most method names are in lower case. Tab-completion also applies to methods. For example if you
write V. in a cell and press the tab key you will get all methods appliable to V.

sage: V.

1



While if you write V.card and press tab, you will magically obtain V.cardinality because this is the unique
method of V starting with card

sage: V.cardinality

Exercise 1.1

A partition of a nonnegative integer n is a non-increasing list of positive integers with total sum n. Does Sage have
a command for defining a partition ?

sage: Partition

(hint: type Part and then hit the <TAB> key)

Create the partition with list [4,3,1,1] and assign it to the Python name p :

sage: p = Partition([4, 3, 1, 1])

(hint: to see documentation and examples for the Permutation command, type Partition?)

Find the conjugate of p (and name it q):

sage: q = p.conjugate(); q
[4, 2, 2, 1]

Which of p and q dominates the other ?

sage: print p.dominates(q)
....: print q.dominates(p)
True
False

(hint: to see the methods available to the partition named p, you can type p. and hit <TAB>)

How did Sage decide whether p dominates q ?

sage: p.dominates??

(hint: to access the source code, use p??)

Exercise 1.2

Find out what is the name of the function to construct a matrix

sage: matrix([[1,2],[3,4]])
[1 2]
[3 4]

Compute the rank, the determinant and the Hermite normal form of the following 5x5 integer matrix
8 0 7 5 6
9 0 6 9 4
4 9 5 3 0
6 9 4 9 3
0 8 4 5 6


sage: M = matrix(5, 5, [8,9,4,6,0,0,0,9,9,8,7,6,5,4,4,5,9,3,9,5,6,4,0,3,6]); M
....: print M.rank()
....: print M.determinant()
....: print M.hermite_form()
5
-7117

2



[ 1 0 0 0 2308]
[ 0 1 0 0 6657]
[ 0 0 1 0 2420]
[ 0 0 0 1 744]
[ 0 0 0 0 7117]

Obtain a latex code for this matrix using the function latex

sage: latex(M)
\left(\begin{array}{rrrrr}
8 & 9 & 4 & 6 & 0 \\
0 & 0 & 9 & 9 & 8 \\
7 & 6 & 5 & 4 & 4 \\
5 & 9 & 3 & 9 & 5 \\
6 & 4 & 0 & 3 & 6
\end{array}\right)

Playing with integers

To create an integer, simply write it in base 10 as:

sage: 12395851
12395851

To assign the integer 14585 to a variable named n use:

sage: n = 14585

Once the variable is created, you can access all its methods using tab-completion. Write n. in the following cell
and press the tab key

sage: n.

Exercise 1.3

Find out the name of the method on integers that give the list of prime factors of an integer n

sage: n.prime_factors()
[5, 2917]

(note: to do that, you first need to assign an integer to a variable and use tab-completion on this variable)

Solve Euler problem 3: what is the largest prime factor of the number 600851475143

sage: 600851475143.prime_factors()[-1]
6857

Exercise 1.4

Find the name of the function that given an integer n returns the n-th prime number

sage: primes_first_n(5)[-1]
11

Solve Euler problem 7: what is the 100001-th prime number

sage: primes_first_n(100001)[-1]
1299721

3

https://projecteuler.net/problem=3
https://projecteuler.net/problem=7


Exercise 1.5

Solve Euler problem 10: what is sum of prime numbers below two milions?

sage: sum(prime_range(2000000))
142913828922

(hint: You can use the function sum to make the sum of elements in a list.)

Exercise 1.6

What is the name of the method on integer that provides the list of digits?

sage: n = 131
....: n.digits()
[1, 3, 1]

Check that the sum of digits of 215 = 32768 is 3+2+7+6+8 = 26

sage: n = 32768
....: sum(n.digits()) == 26
True

Solve Euler problem 16 and Euler problem 20

sage: print sum((2^1000).digits())
....: print sum((factorial(100)).digits())
1366
648

Note that the comparison operators are == (for equality), != (for difference). You already used the sign = but for
another purpose: assignment of value to a variable.

Graphics and Symbolic functions

It is often helpful to make pictures in mathematics. Sage comes with a lot of graphical capabilities. The main
commands for 2d plotting are

∙ plot : plot an object

∙ point2d : plot a list of points

∙ line2d : draw a broken line between points

∙ polygon2d : draw a polygon

For example:

sage: plot(sin(x), (x, 0, 2*pi))

sage: point2d([(0,0), (1,1), (2,0), (3,1)], color=’red’)

Graphics can be assigned to variables and it is possible to superimpose them using addition:

sage: P1 = plot(sin(x), (x, 0, 2*pi), color=’blue’)
....: P2 = plot(cos(x), (x, 0, 2*pi), color=’red’)
....: P = P1 + P2
....: P.show()

Note also that many objects possess a plot method that allows to produce graphics:

4

https://projecteuler.net/problem=10
https://projecteuler.net/problem=16
https://projecteuler.net/problem=20


sage: m = AlternatingSignMatrices(20).random_element()
....: fpl = m.to_fully_packed_loop()
....: fpl.plot(link_color_map=’rainbow’)

To learn more about graphics, have a look at http://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.
html and https://doc.sagemath.org/html/en/tutorial/tour_plotting.html

Exercise 1.7

Draw a graphics of the function f (x) = sin(x)+ cos(x)− xexp(x) for x between 0 and 1

sage: f(x) = sin(x) + cos(x) - x * exp(x)
....: plot(f, x, 0, 1)

Using the function find_root, obtain an approximation of the unique solution r of f (r) = 0 with r ∈ (0,1).

sage: r = find_root(f, 0, 1); r
0.6998282883190581

Draw a graphics of f together with a red vertical line between (r,−1) and (r,1)

sage: P1 = plot(f, 0, 1)
....: P2 = plot(line(((r, -1), (r, 1))))
....: P1 + P2

Exercise 1.8

What are the first 20 terms of the Taylor expansion at x = 0 of the function g(x) = 1/
√

1−4* x

sage: g(x) = 1 / sqrt(1 - 4 * x)
....: g.taylor(x, 0, 19)
x |--> 35345263800*x^19 + 9075135300*x^18 + 2333606220*x^17 + 601080390*x^16 + 155117520*x^15 + 40116600*x^14 + 10400600*x^13 + 2704156*x^12 + 705432*x^11 + 184756*x^10 + 48620*x^9 + 12870*x^8 + 3432*x^7 + 924*x^6 + 252*x^5 + 70*x^4 + 20*x^3 + 6*x^2 + 2*x + 1

Check on the taylor expansion that

g(x) = ∑
n≥0

(
2n
n

)
xn

sage: for n in range(20):
....: print n, binomial(2*n, n)
0 1
1 2
2 6
3 20
4 70
5 252
6 924
7 3432
8 12870
9 48620
10 184756
11 705432
12 2704156
13 10400600
14 40116600
15 155117520
16 601080390
17 2333606220
18 9075135300

5

http://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html
http://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html
https://doc.sagemath.org/html/en/tutorial/tour_plotting.html


19 35345263800

Combinatorics

In Sage, it is possible to build set of objects such that the alternating sign matrices of size 100×100 :

sage: A = AlternatingSignMatrices(100)
....: A
Alternating sign matrices of size 100

Exercise 1.9

How many alternating sign matrices of size 100×100 are there?

sage: A.cardinality()
67646598758135364929766105202064061548880635165171008431467330663074020824274350145655952261209835873471998434649026898743552719017530774467665440066378212487465276748835757320937722883516914771025941994364259074081633745194182795303792782386364156011889797702249624656293623090331365176412987169107956929893906691837790203805324848278523051892678566959524684937559468309061642907141388317464554478493799375191780485737013728816786563747745275966081016332577016766378998630659070253824266585368968212004162093058178099275098925255177150341226891129333108960702052030500172949212553682337174501590698158249096078547143949845830890554022513059455443398797554920501445575972523760007181991971164600649300008296835626471233577242420415141350372936080149629409298524932704358220893836867610327072250698806614699732606572442579714990492066999635634301119490567845001613642344010705688314276991141347998778009889027025423498310806341127678866995548401832916746383750016837512269151387212372953453219592776280544284259880868849167548141899447919253425061333222531631171613408573138332668524248821566452941896629214485113421439342359825510039552

How does it compare with the number of atoms in the universe?

Exercise 1.10

Euler problem 24: what is the millionth lexicographic permutation of {0,1, . . . ,9}?

sage: p = Permutations(10)
....: p[999999]
[3, 8, 9, 4, 10, 2, 6, 5, 7, 1]

Exercise 1.11

Solve Euler problem 5: what is the smallest positive number that is divisible by all of the numbers from 1 to 20?

sage: # NAIVE algorithm
....: # def Euler_5():
....: # n = 1
....: # found = false
....: # while found == false:
....: # found = true
....: # for d in range(1,21):
....: # if n % d != 0:
....: # found = false
....: # break
....: # if found == true :
....: # return n
....: # n += 1
....:
....: # optimized
....: def Euler_5(m):
....: factors = []
....: for n in range(1, m + 1):
....: if is_prime(n):
....: i = 1
....: while n^i < m:
....: i += 1

6

https://en.wikipedia.org/wiki/Alternating_sign_matrix
https://projecteuler.net/problem=24
https://projecteuler.net/problem=5


....: factors.append(n^(i-1))

....: return prod(factors)

....:

....: Euler_5(20)
232792560

More resources

On the Euler project website you can find mathematical challenges to be solved with a computer. You can chal-
lenge yourself with the following ones that do not require any programming but only to find the right Sage function

Some other tutorial are available on internet, in particular

∙ Official Python tutorial

7

https://projecteuler.net
https://docs.python.org/2.7/tutorial/

	The three golden rules
	Objects, functions, methods
	Exercise 1.1
	Exercise 1.2

	Playing with integers
	Exercise 1.3
	Exercise 1.4
	Exercise 1.5
	Exercise 1.6

	Graphics and Symbolic functions
	Exercise 1.7
	Exercise 1.8

	Combinatorics
	Exercise 1.9
	Exercise 1.10

	Exercise 1.11
	More resources

