
Sage demo: Introduction (Fields Institute, Toronto 2018)

(by Vincent Delecroix, Bordeaux, France)

All worksheets for the workshop are available on the wiki https://wiki.sagemath.org/days96

Sage (or SageMath) is an open source software (GPL-licensed) for mathematics which interfaces many softwares
and libraries, e.g.:

∙ PARI/GP (number theory),

∙ GAP (group theory),

∙ Maxima (symbolic calculus),

∙ The SciPy suite (numpy, scipy, matplotlib)

∙ GMP (C library for arbitrary precision integers)

∙ MPFR (C library arbitrary precision floating point numbers)

∙ NTL (C++ library for number theory)

∙ and many more

Python, Ipython and Jupyter

Sage is based on the Python language, which is very popular (web programming, graphical interaces, scripts, ...)
and easy to learn.

As of version 8.3, Sage uses Python 2 and is in a phase transition towards Python 3.

The way you will mostly interact with Sage is through IPython which is an enhanced Python interpreter. Sage and
IPython can be used in two modes: in a console or through Jupyter. This document is an example of a Jupyter
worksheet.

Python is an expressive langage{
17n

∣∣∣ n ∈ {0,1, . . . ,9} and n is odd
}

sage: S = {17*n for n in range(10) if n%2 == 1}
sage: S

sage: 124 in S

sage: sum(S)

sage: {3*i for i in S}

To execute the content of one of the code cells above, you need to press <SHIFT> + <ENTER> or <CTRL> +
<ENTER>. If you only press <ENTER> it will either bring you in edit mode or insert a linebreak.

1

https://wiki.sagemath.org/days96
http://sagemath.org
http://pari.math.u-bordeaux.fr/
http://www.gap-system.org/
http://maxima.sourceforge.net/
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
https://gmplib.org/
http://www.mpfr.org/
http://www.shoup.net/ntl/
http://www.sagemath.org/links-components.html
http://www.python.org
https://ipython.org/
http://jupyter.org/

To access the Jupyter help, pass in command mode with <ESC> and then press <h>.

Sage add some mathematical objects and functions

sage: 8324074213.factor()

sage: m = matrix(ZZ, 3, 3, [0,3,-2,1,4,3,0,0,1])

sage: m.eigenvalues()

sage: m.inverse()

As in mathematics, the base ring on which an object is defined matters:

sage: R.<x> = PolynomialRing(ZZ, ’x’) # ZZ = ring of integers

sage: R

sage: P = 6*x^4 + 6*x^3 - 6*x^2 - 12*x - 12
sage: P.factor()

sage: P2 = P.change_ring(QQ) # QQ = field of rational numbers

sage: P2.factor()

sage: P3 = P.change_ring(AA) # AA = field of real algebraic numbers

sage: P3.factor()

sage: P4 = P.change_ring(QQbar) # QQbar = field of complex algebraic numbers

sage: P4.factor()

Autocompletion and documentation

The Sage Jupyter notebook (actually IPython) relies on two things to browse the software and its documentation.

First, you can autocomplete names using the <TAB> key. Pressing <TAB> in the cell below will show you all the
objects in Sage whose names start with in

sage: in

(the list should start with in, incomplete_gamma, infinity, ...). When there is only one possible comple-
tion, the begining of the word will be automatically completed. Pressing <TAB> below will gives you immediately
the sole completion incomplete_gamma

sage: inc

while pressing <TAB> in the following will extend the string by one letter and will propose you two possible
endings.

sage: inf

The second useful feature of the Sage Jupyter notebook (which is again an IPython feature) is accessing to the doc-
umentation of a single function or object which is achieved via the question mark ?. Namely, pressing <SHIFT>
+ <ENTER> in the cell below will show you the documentation of the gamma function

sage: gamma?

As you can notice, the documentation often comes with explanations and examples.

2

https://ipython.org/
https://ipython.org/

Object oriented

Python is an object-oriented language. That means that actions that can be performed on objects (ie, a function in
computer programming) are attached to the object rather than being globally defined names. We already saw this
with P.change_ring(QQ) above. The name change_ring is a function attached to the object P. We say
that it is a class function or a method. A class function is always written in snake case (if this happens to not be
the case for some example you encounter, you can report it as a bug on the pad: https://mensuel.framapad.org/p/
sagedays96).

Tab completion also works with a class function. The first cell below defines a symbolic function f. And using
tab completion in the second cell you can figure out how to compute its integral.

sage: f(x) = sin(x)^2 -sin(x)
sage: f

sage: f.in

Exercise: Draw the Petersen graph. Which algorithm is used to compute the vertex cover of this graph ?

sage: G = grap

sage: # edit here

sage: G.vertex

sage: # edit here

Lost?

If you are lost, stuck with something and you can not find any answer in the documentation just ask your question
on the ask forum.

Calculator

Integration (symbolic):

sage: integral(e^(-x^2), x, -Infinity, Infinity)

sage: integral(1/sqrt(1+x^3), x, 0, 1)

Integration (floating point numeric)

sage: numerical_integral(1/sqrt(1+x^3), 0, 1)

Integration (certified numeric with arbitrary precision). This example would only work if you have a Sage version
>= 8.2

sage: R = ComplexBallField(128)
sage: R.integral(lambda x,_: 1/(1+x^3).sqrt(), 0, 1)

sage: R = ComplexBallField(1024)
sage: R.integral(lambda x,_: 1/(1+x^3).sqrt(), 0, 1)

Computing roots

sage: f(x) = x^5 - 1/3*x^2 - 7*sin(2*x) + 1

sage: plot(f, xmin=-2, xmax=2)

3

https://en.wikipedia.org/wiki/Snake_case
https://mensuel.framapad.org/p/sagedays96
https://mensuel.framapad.org/p/sagedays96
https://ask.sagemath.org/questions/

sage: r1 = find_root(f,-2,-1)
sage: r1

sage: r2 = find_root(f,0,1)
sage: r2

sage: r3 = find_root(f,1,2)
sage: r3

sage: plot(f, xmin=-2, xmax=2) + point2d([(r1,0),(r2,0),(r3,0)], pointsize=50, color=’red’)

Latex:

sage: M = Matrix(QQ, [[1,2,3],[4,5,6],[7,8,9]]); M

sage: latex(M)

sage: M.parent()

sage: latex(M.parent())

Some 3d Graphics:

sage: x, y = SR.var(’x,y’)
sage: plot3d(sin(x-y)*y*cos(x), (x,-3,3), (y,-3,3))

Interaction:

sage: var(’x’)
sage: @interact
sage: def g(f=sin(x)-cos(x)^2, c=0.0, n=(1..30),
....: xinterval=range_slider(-10, 10, 1, default=(-8,8), label="x-interval"),
....: yinterval=range_slider(-50, 50, 1, default=(-3,3), label="y-interval")):
....: x0 = c
....: degree = n
....: xmin,xmax = xinterval
....: ymin,ymax = yinterval
....: p = plot(f, xmin, xmax, thickness=4)
....: dot = point((x0,f(x=x0)),pointsize=80,rgbcolor=(1,0,0))
....: ft = f.taylor(x,x0,degree)
....: pt = plot(ft, xmin, xmax, color=’red’, thickness=2, fill=f)
....: show(dot + p + pt, ymin=ymin, ymax=ymax, xmin=xmin, xmax=xmax)
....: pretty_print(html(’$f(x)\;=\;%s$’%latex(f)))
....: pretty_print(html(’$P_{%s}(x)\;=\;%s+R_{%s}(x)$’%(degree,latex(ft),degree)))

Licence and development

SageMath is distributed under a GPL licence which means that you can freely download the software, have access
to its source code and you can redistribute it in any form you like as long as you use a GPL-compatible licence.

The source code access can be done with two question marks ?? directly in a cell

sage: gamma??

The Sage project began in 2005 under the inpetus of William Stein and is now being developed by hundreds of
developers around the world. Most of the development is happening on the trac server and the sage-devel mailing
list.

4

https://en.wikipedia.org/wiki/GNU_General_Public_License
https://trac.sagemath.org/
https://groups.google.com/forum/#!forum/sage-devel
https://groups.google.com/forum/#!forum/sage-devel

Extra packages for geometry and dynamics

There are several packages built on top of Sage dedicated to geometry and dynamics. We will study them in more
depth during this Sage Days 96. Let us mention

∙ flipper: mapping classes (homeomorphisms of surfaces)

∙ snappy: 3-d hyperbolic geometry

∙ surface_dynamics: interval exchange transformations, origamis and more

∙ flatsurf: translation surfaces (affine transformation, linear flow, etc)

These packages are not installed by default in Sage. The instructions to install them are available on the wiki
https://wiki.sagemath.org/days96

Let us use flipper and check the braid relation on a surface of genus 2 with 1 puncture. The surface S2,1 (that is
builtin in flipper) is depicted on the picture below

Here is how to play with the Dehn-twist around the curves a and b

sage: import flipper

sage: S = flipper.load(’S_2_1’)
sage: a = S.mapping_class(’a’)
sage: b = S.mapping_class(’b’)
sage: print(a*b*a == b*a*b) # braid relation
sage: print(a*b == b*a) # these do not commute

With snappy installed you can investigate 3-dimensional hyperbolic manifolds. It comes with an extensive
database of them. Here we compute some invariantes of the manifold "m015" from the database.

sage: import snappy

sage: M = snappy.Manifold("m015")
sage: M

sage: M.cusp_info()

sage: M.alexander_polynomial()

sage: M.volume()

sage: M.complex_volume()

Flipper can be used to construct mapping tori of pseudo-Anosov homeomorphism and send them to snappy for
further analysis

sage: import flipper
sage: import snappy

5

http://flipper.readthedocs.io/en/latest/
https://www.math.uic.edu/t3m/SnapPy/
http://www.labri.fr/perso/vdelecro/flatsurf_sage.html
https://github.com/videlec/sage-flatsurf
https://wiki.sagemath.org/days96

sage: S = flipper.load(’S_2_1’)
sage: a = S.mapping_class(’a’)
sage: b = S.mapping_class(’b’)
sage: C = S.mapping_class(’C’)
sage: d = S.mapping_class(’d’)
sage: f = a * b * C * d
sage: f.nielsen_thurston_type()

sage: M = snappy.Manifold(f.bundle())
sage: M.volume()

With surface_dynamics installed you can play with origamis (an origami is a finite cover of a square torus ramified
at most over the origin)

sage: import surface_dynamics

sage: o = surface_dynamics.Origami(’(1,2)’, ’(1,3)’)

sage: o.stratum()

sage: o.plot()

sage: V = o.veech_group()
sage: print V
sage: print V.nu2(), V.nu3(), V.ncusps()

sage: V.farey_symbol().fundamental_domain()

Finally, flatsurf allows you to construct translation surface from polygons and play with translation flow. Below
we construct saddle connections on the double pentagon

sage: import flatsurf

sage: S = flatsurf.translation_surfaces.veech_double_n_gon(5)
sage: S.plot()

sage: sc = S.saddle_connections(20)
sage: S.plot() + sum(s.plot(color=’red’) for s in sc)

Flipper pseudo-Anosov can also be sent to flatsurf as follows

sage: import flipper
sage: import flatsurf

sage: S = flipper.load(’S_2_1’)
sage: a = S.mapping_class(’a’)
sage: b = S.mapping_class(’b’)
sage: C = S.mapping_class(’C’)
sage: d = S.mapping_class(’d’)
sage: f = a * b * C * d
sage: S = flatsurf.translation_surfaces.from_flipper(f)

The essentials

∙ Use Tab completion to browse and access documentation with ?

∙ The main website: http://www.sagemath.org/ (including some HTML documentation)

∙ A forum to ask your questions about Sage: http://ask.sagemath.org

∙ A book "Calcul mathématique avec Sage"/"Computational Mathematics with SageMath"/"Rechnen mit
Sage", a book about Sage (in french, english and german): http://sagebook.gforge.inria.fr/

6

http://www.sagemath.org/
http://ask.sagemath.org
http://sagebook.gforge.inria.fr/

What’s next?

system-message
WARNING/2 in intro.en.rst, line 455
Title underline too short.

What’s next? ----------
backrefs:

Go to the wiki https://wiki.sagemath.org/days96 and choose a worksheet. If you just start with Sage or does not
know much about Python programming, it would be a good idea to work on the 6 Programming worksheets ("First
steps with Sage", "Learn about for loops", etc).

You can also have a look at the Sage documentation. It can be accessed from a Jupyter notebook by clicking on
"Help". Or from the main website http://www.sagemath.org/.

Authors: ∙ Thierry Monteil

∙ Vincent Delecroix

License: CC BY-SA 3.0

7

https://wiki.sagemath.org/days96
http://www.sagemath.org/

	Python, Ipython and Jupyter
	Python is an expressive langage
	Sage add some mathematical objects and functions
	Autocompletion and documentation
	Object oriented
	Lost?

	Calculator
	Licence and development
	Extra packages for geometry and dynamics
	The essentials
	What's next?

