Congruences and Unramified Cohomology

Dimitar Jetchev and William Stein

November 19, 2005

1 Unramified Cohomology

Suppose E is an elliptic curve over a number field K and let p be a prime. For any \mathbb{F}_p vector space M let dim M denote the \mathbb{F}_p dimension of M.

Denote by $\Phi_{E,v}$ the component group of E at v, and let

$$\tau_p = \sum_v \dim \Phi_{E,v}(\mathbb{F}_v)[p].$$

Let $H^1_{ur}(K, E[p])$ denote the subgroup of cohomology classes that split over an unramified extension of K_v for all v. Let

$$Sel_{ur}^{(p)}(E/K) = Sel^{(p)}(E/K) \cap H_{ur}^{1}(K, E[p]). \tag{1.1}$$

Proposition 1.1. We have

$$\dim H^1_{\mathrm{ur}}(K, E[p]) \ge \dim \mathrm{Sel}_{\mathrm{ur}}^{(p)}(E/K) \ge \dim H^1_{\mathrm{ur}}(K, E[p]) - \tau_p \tag{1.2}$$

Proof. Consider the exact sequence

$$0 \to \operatorname{Sel}_{\mathrm{ur}}^{(p)}(E/K) \to \operatorname{H}_{\mathrm{ur}}^{1}(K, E[p]) \to \bigoplus_{v} \operatorname{H}^{1}(K_{v}^{\mathrm{ur}}/K_{v}, E). \tag{1.3}$$

By [Mil86, Prop. 3.8], $H^1(K_v^{ur}/K_v, E) \cong H^1(\mathbb{F}_v, \Phi_{E,v})$. Because $Gal(\overline{\mathbb{F}}_v/\mathbb{F}_v)$ is pro-cyclic, $\dim H^1(\mathbb{F}_v, \Phi_{E,v})[p] = \dim \Phi_{E,v}(\mathbb{F}_v)[p]$. A dimension count using (1.3) then implies (1.2).

Proposition 1.2. We have

$$\dim \mathrm{Sel}^{(p)}(E/K) \ge \dim \mathrm{Sel}^{(p)}_{\mathrm{ur}}(E/K)$$

$$\geq \dim \mathrm{Sel}^{(p)}(E/K) - \sum_{v \nmid p} \dim \Phi_{E,v}(\mathbb{F}_v)[p] - \sum_{v \mid p} \dim E(K_v) / (pE(K_v^{\mathrm{ur}}) \cap E(K_v)).$$

Proof. We have an exact sequence

$$0 \to \operatorname{Sel}_{\mathrm{ur}}^{(p)}(E/K) \to \operatorname{Sel}^{(p)}(E/K) \to \bigoplus_{v} E(K_v)/(pE(K_v^{\mathrm{ur}}) \cap E(K_v)). \tag{1.4}$$

For $v \nmid p$ the group $E^0(K_v^{ur})$ is p divisible (see [AS02, §3.2]). Thus for $v \nmid p$,

$$E(K_v)/(pE(K_v^{\mathrm{ur}}) \cap E(K_v)) \subset E(K_v^{\mathrm{ur}})/pE(K_v^{\mathrm{ur}}) \cong \Phi_{E,v}(\overline{\mathbb{F}}_v) \otimes \mathbb{F}_p.$$

The image of $\operatorname{Sel}^{(p)}(E/K)$ in $\Phi_{E,v}(\overline{\mathbb{F}}_v) \otimes \mathbb{F}_p$ is fixed by $\operatorname{Gal}(K_v^{\operatorname{ur}}/K_v)$, so lies in $\Phi_{E,v}(\mathbb{F}_v) \otimes \mathbb{F}_p$. Thus for $v \nmid p$

A dimension count involving (1.4) then finishes the proof.

Let \mathcal{E} denote the Néron model of E over \mathcal{O}_v , and let \mathcal{E} be the open subscheme that reduces to the identity component mod v.

Lemma 1.3. Suppose E is an elliptic curve over K and suppose that $v \mid p$ is such that e(v) , where <math>e(v) is the ramification degree of v. Then

$$\dim E(K_v)/pE(K_v) = [K_v : \mathbb{Q}_p] + \dim E(K_v)[p]$$

$$\leq [K_v : \mathbb{Q}_p] + \dim \mathcal{E}^0(\mathbb{F}_v)[p] + \dim \Phi_{E,v}(\mathbb{F}_v)[p]$$

Proof. Since e(v) the theory of formal groups (see e.g., [Sil92, Thm. 6.4]) implies that there is an exact sequence

$$0 \to \mathcal{O}_v \to E(K_v) \to \mathcal{E}(\mathbb{F}_v) \to 0.$$

Apply the snake lemma to multiplication by p on this sequence and using that \mathcal{O}_v is a ring of characteristic 0 (so $\mathcal{O}_v[p] = 0$), we obtain the exact sequence

$$0 \to E(K_v)[p] \to \mathcal{E}(\mathbb{F}_v)[p] \to \mathcal{O}_v/p\mathcal{O}_v \to E(K_v)/pE(K_v) \to \mathcal{E}(\mathbb{F}_v)/p\mathcal{E}(\mathbb{F}_v) \to 0.$$

Thus

$$\dim E(K_v)[p] - \dim \mathcal{E}(\mathbb{F}_v)[p] + \dim \mathcal{O}_v/p\mathcal{O}_v - \dim \frac{E(K_v)}{pE(K_v)} + \dim \frac{\mathcal{E}(\mathbb{F}_v)}{p\mathcal{E}(\mathbb{F}_v)} = 0.$$

Since dim $\mathcal{O}_v/p\mathcal{O}_v = \operatorname{rank} \mathcal{O}_v = [K_v : \mathbb{Q}_p]$, and for any finite abelian group A, #A[p] = #(A/pA), this becomes

$$\dim E(K_v)[p] + [K_v : \mathbb{Q}_p] - \dim \frac{E(K_v)}{pE(K_v)} = 0.$$

Since the torsion-free group \mathcal{O}_v is the kernel of reduction, $E(K_v)[p] \subset \mathcal{E}(\mathbb{F}_v)[p]$. thus

$$\dim E(K_v)/pE(K_v) \le [K_v : \mathbb{Q}_p] + \dim \mathcal{E}(\mathbb{F}_v)[p]$$

By Lang's theorem, $H^1(\mathbb{F}_v, \mathcal{E}^0) = 0$, so $0 \to \mathcal{E}^0(\mathbb{F}_v) \to \mathcal{E}(\mathbb{F}_v) \to \Phi_{E,v}(\mathbb{F}_v) \to 0$ is exact, hence

$$\dim \mathcal{E}(\mathbb{F}_v)[p] \le \dim \mathcal{E}^0(\mathbb{F}_v)[p] + \dim \Phi_{E,v}(\mathbb{F}_v)[p].$$

Theorem 1.4. Suppose E is an elliptic curve over \mathbb{Q} and p is a good odd non-anomalous prime that doesn't divide any Tamagawa number of E. Then there is an exact sequence

$$0 \to \mathrm{H}^{1}_{\mathrm{ur}}(\mathbb{Q}, E[p]) \to \mathrm{Sel}^{(p)}(E/\mathbb{Q}) \to E(\mathbb{Q}_{p})/(pE(\mathbb{Q}_{p}^{\mathrm{ur}}) \cap E(\mathbb{Q}_{p})), \tag{1.5}$$

and

$$\dim E(\mathbb{Q}_p)/(pE(\mathbb{Q}_p^{\mathrm{ur}})\cap E(\mathbb{Q}_p)) \leq \dim E(\mathbb{Q}_p)/pE(\mathbb{Q}_p) \leq 1.$$

In particular dim Sel^(p) $(E/\mathbb{Q})/H^1_{ur}(\mathbb{Q}, E[p]) \le 1.$

Proof. The Tamagawa number hypothesis implies that $\tau_p = 1$, so Proposition 1.1 implies that $\mathrm{H}^1_{\mathrm{ur}}(\mathbb{Q}, E[p]) = \mathrm{Sel}^{(p)}_{\mathrm{ur}}(E/\mathbb{Q})$, which yields the injection of (1.5). The rest of the sequence then follows from Lemma 1.3 and the *proof* of Proposition 1.2

2 Compare Selmer Groups via Congruences

Suppose E and F are elliptic curves over a number field K and p is a prime such that $E[p] \cong F[p]$ as G_K -modules. This isomorphism of p-torsion induces an isomorphism

$$\mathrm{H}^1_{\mathrm{ur}}(K, E[p]) \cong \mathrm{H}^1_{\mathrm{ur}}(K, F[p]).$$

If $\tau_p = 1$, then we have a diagram with vertical inclusions

$$\operatorname{Sel}^{(p)}(E/K) \qquad \operatorname{Sel}^{(p)}(F/K) \tag{2.1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{H}^{1}_{\mathrm{ur}}(K, E[p]) \xrightarrow{\cong} \operatorname{H}^{1}_{\mathrm{ur}}(K, F[p])$$

Theorem 2.1. Suppose E, F are elliptic curves over \mathbb{Q} and p is a good odd non-anomalous prime (for both E and F) that doesn't divide any Tamagawa number of E or F. Then

$$|\dim \operatorname{Sel}^{(p)}(E/\mathbb{Q}) - \dim \operatorname{Sel}^{(p)}(F/\mathbb{Q})| \le 1.$$

Proof. Theorem 1.4 implies that the image of each vertical inclusion of (2.1) has codimension ≤ 1 .

Acknowledgment: A very helpful discussion with Karl Rubin.

References

- [AS02] A. Agashe and W. A. Stein, Visibility of Shafarevich-Tate groups of abelian varieties, J. Number Theory 97 (2002), no. 1, 171–185.
- [Mil86] J.S. Milne, Arithmetic duality theorems, Academic Press Inc., Boston, Mass., 1986.
- [Sil92] J. H. Silverman, *The arithmetic of elliptic curves*, Springer-Verlag, New York, 1992, Corrected reprint of the 1986 original.