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Introduction

e Stark-Heegner points are points on modular elliptic
Ccurves.

e [ hey are constructed p-adic analytically.

e [ hey are conjectured to be rational over specific
class fields of real quadratic fields.

e T heir rationality falls outside the scope of complex
multiplication (CM) theory which is concerned with
class fields of imaginary quadratic fields.

e Stark-Heegner points are to Mordell-Weil groups as
Stark units are to unit groups.



Darmon’s construction

e H. Darmon, Integration of Hy, x 'H and arithmetic
applications, Annals of Math., 2001.

e iNput:
1. an elliptic curve E/Q of conductor pN with pt N

2. a real quadratic field K of with (discK,pN) =1
satisfying the Stark-Heegner hypothesis — p is
inert in K & all £| N split in K

e output: a system of local points Py € E(Kp) in-
dexed by optimal embeddings ¢ : O — Ro(N) =
{(g 3) e M»(Z) : N|c}, where O is in order in K of
conductor prime to pN



A dgeneralization

e iNnput:
1. semistable E/Q of conductor pN with p{ N

2. a real quadratic field K of with (discK,pN) =1
such that

<discK
p

) = —1 and sign(L(E/K,s)) = —1.

Set

NE=T] {e | N, (dis;f K) — il} |

Rév_(N"‘) .= Eichler order of level NT in indefinite
quaternion algebra of discriminant N .

5



e output: a system of local points P, € E(Kp) in-

dexed by optimal embeddings ¢ : O — RY (NT),
where O is in order in K of conductor prime to pN

We conjecture that the Stark-Heegner points P¢ be-
have like classical Heegner points:

e P, is rational over the ring class field Hy associated
to the order O.

e They obey a Shimura-style reciprocity law which
gives an analytic description of the Galois action on



Computing Stark-Heegner points

e Darmon-Green and Darmon-Pollack collected much
numerical evidence for this conjecture in the case
Nt =N"=1.

e I would like to describe an (unimplemented!) ap-
proach for doing analogous computations in the
case where the Shimura curve Xév_(N"‘) has genus
Zero.



The Stark-Heegner construction
Let

r=RY (NT)Y, To=R) (pNT)]
@ m— |_ >I<|—O I—

e © is a p-arithmetic group. It acts on H with dense
orbits, but discontinuously on Hy, X H.

e One can formulate a theory of modular forms on O,
a p-adic theory of integration and periods of such
forms.

e \We have a formalism in which Stark-Heegner points
arise by integrating modular forms on © over non-
closed cycles, vielding invariants well defined mod-
ular the (Tate) period lattice of E/Q),.



A simplified construction in a special case

e \We have good algorithms for computing with Fuch-
Sian groups, © is not a Fuchsian group and I don't
know how to compute with modular forms on ©.

o If 3P s finite, one can construct the formal group
logarithms of the Stark-Heegner points without us-
ing ©.

e This is motivated my (still unrealized) desire to
compute Stark-Heegner points arising from Shimura
curve parametrizations.



I would like to describe this simplified construction by
analogy:

e recall major players in the classical Heegner point
construction

e identify p-adic analogues in the Stark-Heegner world
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Heegner points

setting: E/Q of conductor N, f € S>(IM) with L(FE,s) =
L(f,s)

Let p: H* — Xo(IN)(C) be the natural projection. The
integration map

HO(Xo(N)(C), 2k,) x DNOH* — C, (w,D) v /Dp*w
induces a map

/_ omif (r)dr : Ho(T, DVOH*) — C/A; 22 E(C).

Theorem. If D € Div0H* is supported on imaginary
quadratic irrationalities and cusps, then the image in
E(C) of /D orif(r)dr lies in E(Q).
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e iNput:
1. an elliptic curve E/Q

2. a divisor D supported on imaginary quadratic ir-
rationalities and cusps

e output: a complex number /D 2mif(7)dT whose im-

age under the Weierstrass uniformization of E be-
longs to E(Q)

Can we naively replace D by a divisor supported on
real quadratic irrationalities and expect to get algebraic
points?

No! There are no real quadratic irrationalities in H*.
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Enter p-adic analysis

e [ here are plenty of imaginary quadratic irrationali-
ties in the p-adic upper half-plane

Hp = P1(Q,2) — PH(Qy).
If K is a real quadratic field and p is inert in K, then
KNHp#=0.

e Replace all archimedean objects with their nonar-
chimedean counterparts:

H «— Hp, er]m(H) — erig(Hp), 2mif(7)dr, «—— 77?7
Here, erig(Hp) is the group of rigid-analytic differ-
ential 1-forms on Hy.
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Eichler-Shimura isomorphisms

e naive idea: Replace

2rif(r)dr € HO(Io, Q1 (H)),
with an element of HO(Fg, 2, (Hp)).

e There is no relation between S>(Ig) and

HO(Io, 2}, (Hp)) (that I know of).

e But there is a relation between S»(I"g) and H1(T, Q}ig(Hp)).

e [0 related them we use an intermediate object —
H'(g,Cp) = HY(Mp, Q) ® Cp.
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Theorem. (G. Stevens) Let f € S>([g)P""W be a
Hecke eigenform with rational Hecke eigenvalues. Then

HY (M, Qb (Hp))PE =25 H(Tg, Cp)

IS an isomorphism.

HY (Mo, @* < HY (M, Qg (Hp) ™
ot . -
(Define ®* by this diagram.)

e ®* plays the role of 2wif(7)dr in the Stark-Heegner
point construction.

e I want to sketch the proof of the above theorem.
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Locally analytic functions

o Let C,(P1(Qp)) be the group of locally analytic
functions on P1(Q,) with values in Cp:

- Let B, be decomposition of P1(Q,) into p™ +
p"~1 residue disks of radius p~™", i.e., the fibres
of P1(Q,) — PL(Z/p"Z).

- Let C3(P1(Qp),n) be the group of functions on
P1(Q,) which have convergent power series ex-
pansions on each disk in By,.

- Cla(PH(Qp)) = lim 1o (P(Qp), n)

e C, embeds in C;(P1(Q,)) as constant functions.
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Locally analytic distributions
e Da(PH(Qp),n) = Cla(PH(Qp), )Y,
o Da(PH(Qp)) = Cla(PH(Qp))Y = lim D3 (PH(Qp), n)
o DR(PHQp)) = (Ca(PH(Qp))/Cp)¥

Theorem. (Morita duality) There is a perfect GL>(Qp)-
equivariant pairing

Cla(P1(Qp))/Cp x iy (Hp) — Cp.

e T hus, Q}ig(Hp) = D%(Pl(@p))-
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Proof that
resSx
HY (T, Qi (Hp))! =3 HY (o, Cp)!
IS an isomorphism:

e We use the isomorphism Q1 (Hp) = D (PH(Qp)).

e [ he following diagram commutes:

Q|}ig (HP) = Cp

L

DY (PL(Qp))

Here, Xoo € B7 is the residue disk around infinity of

radius p— 1.
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e Shapiro’s lemma:

HY(I, Da(PH(Qp))) = HY (Mo, Dja(X0)))-

e Stevens shows that
H (M, Dja(Xoo))! =2 HY(Mo, Cp)/

is an isomorphism for all eigenforms f € S»(I"g) of
slope < 1.

e SES: 0 — DY (PL(Qp)) — Dia(PL(Qp)) — Cp — O

o LES:

0= H*(I",Q) — HY(I, DL (P (Qp)))
— HY (I, Dy (PH(Qp))) — H(I,Cp) =0
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Computing o+

° gpi can be computed using fundamental domain al-
gorithms or modular symbols.

e Irritating to compute ®* € HI(I, Q} (Hp)) (The
problem is the coefficient module erlg(Hp) = DL (PL1(Qp)).)

e But, it can be shown that the construction can be
accomplished using the image of &+ under

HY (T, Qpig(Hp)) & HY (T, DY} (Pl(Qp)))
— HY(T, DR (PH(Qp), 1)).

e We can efficiently represent elements of D, (P1(Q)), 1)
using moments and the Pollack-Stevens filtrations.
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Where were we?

e Replace all archimedean objects with their nonar-
chimedean counterparts:

H —— Hp, Q%\OI(H) — Ql}ig(HP)7

2if(r)dr € HO(T, Qr110|(7'f)) —
T ¢ Hl(r,Q}ig(Hp))f

D c DiVOH supported on
imaginary quadratic irrationalities «— 777

e Whatever 777 is in our p-adic context, we should
be able to pair it with dT to get a point.
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e [ here is a natural “evaluation’ pairing

HY (I, DR(PHQp))) x H1 (T, Ca(PH(Qp))/Cp) — Cp
e Try to define 777 as an element of

Hq (T, Qg (Hp)Y) = H1(T, DLPHQp)Y)
= H1 (I, C5(P(Qp))/Cp).
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e There is a GL>(Qp)-equivariant map

DIVOH, — Ca(FL(Qp))/Cp, ()~ {7}  log, ( T ) .

Z — T

e We get a map

H1(I, DivO Hp) — H1 (T, Ca(P1(Qp))/Cp)

e We construct elements of Hq (I, Div° Hp) using real
quadratic irrationalities and the description of Hq in
terms of inhomogeneous cycles and boundaries.
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Group homology
Let G be a group and M a left G-module.

Z1(G, M) =ker(0: Z|G] @ M — M),
9(g ®m) = gm —m,

B1(G, M) =im(8: Z[G]®? @ M — Z[G] @ M),
8(g1 ® go @ M) = go ® g7 *m — g19o @ M + g1 @ m,

Hi(G,M) =7Z1(G,M)/B1(G, M).
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1-cycles associated to real quadratic irrationalities

e Let O C K be a real quadratic order such that
(discO, Np) = 1. Assume p is inert in K.

e Let ¢ : O — RY (NT) be an optimal embedding.

e There is are two points 7, T € Hp, conjugate under
Gal(Q,2/Qp) such that

stabr 7 = stabr 7 = (O07) /{£1} = (yy).
e [ hus,

7¢®{T} S Zl(raDiVHp)v [7¢®{T}] S Hl(raDiVHp)
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But we want elements of Hl(I‘,DiVOHp), not of
Hq (I, DivHp)!

Assume that 2P is finite and let e be its exponent.
(genus zero tame level)

SES: 0 — DivO9H, — DivH, — Z — 0.

LES:

Ho(I,Z) — Hq (T, DivO Hy)
— Hy (I, DivHy) — Hy(I,Z) =raP

Therefore, [7;2 ® {7}] lifts to an element

Cg € H1(T, DivO Hp),
unique up to Eisenstein classes.
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Where were we?

Replace all archimedean objects with their nonarchimedean

counterparts:

H —— Hp, Q%OI(H) — QI}ig(HPL

2mif(7)dT +—— ot e Hi(r, Q}ig(HP>)7

D € Div0 H supported on imaginary quadratic irrationalities
—> C7€. e Hqi (I, Div° Hp),

/D orif(r)dr € C s (dF,C8) € Cp (Morita duality)

() 0 HY(T, Qb (Hp)) x Hi (T, DivOHp) — Cp
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o Let g € pZyp be the Tate period of E/Qp and let log,
be the branch of the logarithm satisfying log, q = O.

e Define log : E(Cp) — C, to be given by

: log
E((Cp) Tate unif. @;; q Cp

\/

log

Conjecture. There are points Pj € E(Hp) ® Q
such that

log Pwi = (o7, Cy)-

e Such a point Pw is called a Stark-Heegner point.
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Lifting explicitly

e For computational purposes, we need to find an
explicit cycle in Z1 (I, Div® H,) mapping to o

e For 7 € Hp, and h,kc I, let
¢ =hkh 'kt @ {7} =[h,k] ® {7}

€ Z[I']l @ Div H,p,

n=hk @k —{r D+ ke (W Hr—{m])
—hte (T =) kT e T HT) — {7

e Z[I'] ® DivO H,.
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Then
¢_p= 8(h®h_1®{T}+k®k_1®{7}+2(1®1®{T})
—h@k{r}—h lek to{r}—hkoh 1K1 @{T})

If we can express 7@ as a product of commutators,
then we can use the above formulas to find an ele-
ment of Z;(I", Div® H,) representing o

Under the assumption that 3P is finite, generic
group algorithms in Magma will (try to) find gen-
erators and relations for [, '] using generators and
relations of [.

We solve the word problem in the Fuchsian group
[, '] by running Voight's algorithms to compute a
fundamental domain for it.
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Another interesting case

e Suppose N =2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13,
16, 18, or 25, so that Xy(NN) has genus zero but
rab —= ry(NV)23P is infinite.

o LES:

Ho (I, Z) — Hq (T, DivO Hy)
— Hy (I, DivHy) — Hy(I,Z) =P

e In this case, H1(I",Z) is Eisenstein. If £1 Np, then
(Tg_(e+1)) [yu@{r}] € ker (Hl(l', DivH,) — Hl(l’,Z)),
so it lifts to Cy, € Hy (I, DivOHy).

e 777 lifting explicitly 777
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e [ hanksl!!

e mgreenbe@ucalgary.ca

e www.math.ucalgary.ca/ “mgreenbe
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