What is Sage?

- Alternative to Maple, Mathematica, and Matlab
- FREE and Open Source ... and FREE!
- Industrial-Strength Math Software that students can use throughout their STEM careers
- Python based
- Uses Web Browser as GUI
- Available for Download or to use Online
- Lots of Support from Developers and Users

Ways to Teach Math with Sage

- Lecture: Displaying 3D graphs
- Student Work:
- Teacher publishes "worksheets" online
- Write directions and examples in ${ }^{4 T} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$
- Write sample code in Sage Python
- Students modify/adapt/create code
- Students "share" their worksheets with the teacher.
- Work in Sage can complement work by hand.

Benefits to Students

- First exposure to precise syntax
- Powerful tool they can use throughout their STEM careers
- Exposure to large array of computational tools
- No installation or license to use on their personal computers

Useful Sage Functions

- Solving equations, numerically or symbolically
- gcd/lcm
- Prime factorization of integers
- Factorization of polynomials
- Simplification of expressions
- Partial Fraction Decomposition
-((f(x+h)-f(x))/h).rational simplify ()
- Differentiating and Integrating
- Statistics in R
- Handles large calculations, as for RSA
- Writes your $\operatorname{LT} T E X$ for you, by [optionally] giving solutions in formatted code to cut and paste.

Also Ask Me About Using

- GeoGebra

- ${ }^{\Delta T} T_{E} X$ and TikZ
- MathType
- LittleFe Mini Supercomputer

Sage Examples
 3×3 Systems

Visualizing 3×3 Systems

Visualize the system to conjecture whether it has a unique solution. If so, solve. If not, explain algebraically why the system has no solution.

$$
\text { 1. } \begin{aligned}
4 x+3 y+5 z & =4 \\
x+2 y-z & =7
\end{aligned}
$$

3. $\quad \begin{aligned} 5 x-2 y+3 z & =-9 \\ 4 x+3 y+5 z & =4\end{aligned}$
$9 x+y+8 z=11$

Sage Methods for Solving Systems

- solve ([f(x,y,z)==0,g(x,y,z)=0, , $h(x, y, z)=0], x, Y, z)$
- A.echelon form ()
- A.inverse () *B
- A.solve_right (B)

Sage Examples Introduction to Programming

Bracket and Halving: Approximate $\sqrt{2}$

```
f(x)= x^2-2
3/2
a=1; b=2; c=0; 5/4
while b-a>0.01: 11/8
    c=(a+b)/2 23/16
    if f(a)*f(c)>0: 45/32
        a=c 91/64
    else: 181/128
        b=c
    print c
```


Newton's Method: Approximate $\sqrt{2}$

```
f(x)=x^2-2
g(x)=derivative(f(x),x)
a=1
while abs(f(a))>0.00001:
    n=n+1
    h(x)=g(a)*(x-a)+f(a)
    a=find_root(h(x),1,2)
    print a, f(a)
1.5 0.25
1.416666666667 0.0069444444444446418
1.41421568627 6.007304882427178e-06
```


Acknowledgements

- This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.
- Shodor, the National Computational Science Institute
- Louisiana Alliance for Simulation-Guided Materials Applications
- Center for Computation and Technology, Louisiana State University

Contact Me

Brad Burkman

Instructor in Mathematics
Louisiana School for Math, Science, and the Arts
www.lsmsa.edu
bburkman@lsmsa.edu
318-527-9209 (Cell)

