Differences between revisions 29 and 30
Revision 29 as of 2014-02-15 14:47:59
Size: 10298
Editor: dch252
Comment:
Revision 30 as of 2019-04-06 16:42:59
Size: 10242
Editor: chapoton
Comment: py3 print
Deletions are marked like this. Additions are marked like this.
Line 14: Line 14:
The space of shapes of a tetrahedron with fixed face areas is naturally a symplectic manifold of real dimension two. This symplectic manifold turns out to be a Kahler manifold and can be The space of shapes of a tetrahedron with fixed face areas is naturally a symplectic manifold of real dimension two. This symplectic manifold turns out to be a Kähler manifold and can be
Line 95: Line 95:
print 'a1=', a1
print 'a2=', a2
print 'a3=', a3

print 'b1=', b1
print 'b2=', b2
print 'b3=', b3

print 'c1=', c1
print 'c2=', c2
print 'c3=', c3

print 'd1=', d1
print 'd2=', d2
print 'd3=', d3
print('a1={}'.format(a1))
print('a2={}'.format(a2))
print('a3={}'.format(a3))

print('b1={}'.format(b1))
print('b2={}'.format(b2))
print('b3={}'.format(b3))

print('c1={}'.format(c1))
print('c2={}'.format(c2))
print('c3={}'.format(c3))

print('d1={}'.format(d1))
print('d2={}'.format(d2))
print('d3={}'.format(d3))
Line 207: Line 207:
             print 'angle between faces 1 and 2 in quantum tetrahedron = ',d8a, 'radians'
             print 'angle between faces 1 and 2 in quantum tetrahedron = ',angle,'degrees'        
             print('angle between faces 1 and 2 in quantum tetrahedron = {} radians'.format(d8a))
             print('angle between faces 1 and 2 in quantum tetrahedron = {} degrees'.format(angle))
Line 214: Line 214:
        print 'Area of face 1=', areamain1, 'm2'          print('Area of face 1=', areamain1, 'm2')
Line 217: Line 217:
        print 'Area of face 2=', areamain2, 'm2'          print('Area of face 2=', areamain2, 'm2')
Line 220: Line 220:
        print 'Area of face 3=', areamain3, 'm2'          print('Area of face 3=', areamain3, 'm2')
Line 223: Line 223:
        print 'Area of face 4=', areamain4, 'm2'          print('Area of face 4=', areamain4, 'm2')
Line 225: Line 225:
        print 'Total area of quantum tetrahedron =', area, 'm2'






        print('Total area of quantum tetrahedron =', area, 'm2')

        html('<h3>Values of Volume Eigenvalue</h3>')
        kmin = int(max(abs(j1-j2),abs(j3 -j4)))
        kmax = int(min((j1+j2),(j3 +j4)))
        d = kmax -kmin + 1
        y=numpy.arange(kmin,kmax+1,1)
        kmatrix = matrix(CDF,int(d), int(d))
        r=list()
        for j in range(d):
            k=int(y[j])
            c1 = -i*k
            c2 = sqrt(4*k*k - 1)
            c3 = sqrt(j1*(j1+1))
            c4 = sqrt((2*j1+1))
            c5 = sqrt(j3*(j3+1))
            c6 = sqrt((2*j3+1))
            c7 = wigner_6j(j1,1,j1,k,j2,k-1)
            c8 = wigner_6j(j3,1,j3,k,j4,k-1)
            a = c1*c2*c3*c4*c5*c6*c7*c8
            r.append(a)
            q = numerical_approx(a, digits=10)
        for j in range(d-1):
            kmatrix[[j],[j+1]]=r[j+1]
            kmatrix[[j+1],[j]]=-r[j+1]
    
        M = (2/9)*kmatrix
        s = M.eigenvalues()
        lp3=6*10^-104
        for j in range(d):
            e = sqrt(s[j])
            vol = lp3*e
            volume = numerical_approx(vol, digits=2)
            if e.imag() ==0:
                print("volume eigenvalue =", e)
                print("volume of tetrahedron =", volume, 'm3')
                

}}}


== Quantum tetrahedron Area Operator eigenvalues ==
by David Horgan.

Given the values of J1, J2, J3 and J4 this interact calculates the area eigenvalues of a quantum tetrahedron.

{{{#!sagecell

html('<h3>Quantum tetrahedron Volume and Angle Eigenvalues</h3>')
html('Enter the four J values into the input boxes')
html('k values k ranges from kmin to kmax in integer steps')
html('The dimension d of the Hilbert space H4, d = kmax - kmin + 1')
html('kmin = max(|j1-j2|,|j3 -j4|) kmax = min(j1+j2,j3 +j4)')
html('The the dimension of the hilbert space is given by d = kmax -kmin + 1')
html('V^2 =M = 2/9(real antisymmetrix matrix))')
html('Spins must satisfy (j1+j2)<= (j3+j4)')
html('Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard ')
html('Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major ')






import numpy



@interact




def _(j1 = input_box(6.0, 'J1'),
      j2= input_box(6.0, 'J2'),
      j3= input_box(6.0, 'J3'),
      j4= input_box(7.0, 'J1'), auto_update=False):
    if (j1+j2)<= (j3+j4):
        html('<h3>Value of Angle eigenvalue in radians</h3>')
        d2=j3*(j3+1)
        d3=j1*(j1+1)
        d4=j2*(j2+1)
        d5=d2-d3-d4
        d6=2*sqrt(d3*d4)
        d7=d5/d6
        d8=arccos(d7)
        print("Angle eigenvalue in radians=", d8)
Line 255: Line 334:
            #print r
Line 259: Line 337:
            #print kmatrix
Line 262: Line 339:
        #print M
s=M.eigenvalues()
        #print s
        s = M.eigenvalues()
Line 271: Line 346:
                print "volume eigenvalue =",(e)
                print "volume of tetrahedron =", volume, 'm3'
                print("volume eigenvalue =", e)
                print("volume of tetrahedron in m3 =", volume)
Line 276: Line 351:


== Quantum tetrahedron Area Operator eigenvalues ==
by David Horgan.

Given the values of J1, J2, J3 and J4 this interact calculates the area eigenvalues of a quantum tetrahedron.

{{{#!sagecell

html('<h3>Quantum tetrahedron Volume and Angle Eigenvalues</h3>')
html('Enter the four J values into the input boxes')
html('k values k ranges from kmin to kmax in integer steps')
html('The dimension d of the Hilbert space H4, d = kmax - kmin + 1')
html('kmin = max(|j1-j2|,|j3 -j4|) kmax = min(j1+j2,j3 +j4)')
html('The the dimension of the hilbert space is given by d = kmax -kmin + 1')
html('V^2 =M = 2/9(real antisymmetrix matrix))')
html('Spins must satisfy (j1+j2)<= (j3+j4)')
html('Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard ')
html('Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major ')






import numpy



@interact




def _(j1 = input_box(6.0, 'J1'),
      j2= input_box(6.0, 'J2'),
      j3= input_box(6.0, 'J3'),
      j4= input_box(7.0, 'J1'), auto_update=False):
    if (j1+j2)<= (j3+j4):
        html('<h3>Value of Angle eigenvalue in radians</h3>')
        d2=j3*(j3+1)
        d3=j1*(j1+1)
        d4=j2*(j2+1)
        d5=d2-d3-d4
        d6=2*sqrt(d3*d4)
        d7=d5/d6
        d8=arccos(d7)
        print "Angle eigenvalue in radians=",(d8)


        html('<h3>Values of Volume Eigenvalue</h3>')
        kmin = int(max(abs(j1-j2),abs(j3 -j4)))
        kmax = int(min((j1+j2),(j3 +j4)))
        d = kmax -kmin + 1
        y=numpy.arange(kmin,kmax+1,1)
        kmatrix = matrix(CDF,int(d), int(d))
        r=list()
        for j in range(d):
            k=int(y[j])
            c1 = -i*k
            c2 = sqrt(4*k*k - 1)
            c3 = sqrt(j1*(j1+1))
            c4 = sqrt((2*j1+1))
            c5 = sqrt(j3*(j3+1))
            c6 = sqrt((2*j3+1))
            c7 = wigner_6j(j1,1,j1,k,j2,k-1)
            c8 = wigner_6j(j3,1,j3,k,j4,k-1)
            a = c1*c2*c3*c4*c5*c6*c7*c8
            r.append(a)
            q=numerical_approx(a, digits=10)
            #print r
        for j in range(d-1):
            kmatrix[[j],[j+1]]=r[j+1]
            kmatrix[[j+1],[j]]=-r[j+1]
            #print kmatrix
    
        M = (2/9)*kmatrix
        #print M
        s=M.eigenvalues()
        #print s
        lp3=6*10^-104
        for j in range(d):
            e= sqrt(s[j])
            vol = lp3*e
            volume = numerical_approx(vol, digits=2)
            if e.imag() ==0:
                print "volume eigenvalue =",(e)
                print "volume of tetrahedron in m3 =", volume
                

}}}

Sage Interactions - Loop Quantum Gravity

goto interact main page

5-cell.gif

Holomorphic factorization of the Quantum Tetrahedron

by David Horgan.

Moduli Space of Shapes of a Tetrahedron with Faces of Equal Area

The space of shapes of a tetrahedron with fixed face areas is naturally a symplectic manifold of real dimension two. This symplectic manifold turns out to be a Kähler manifold and can be

parametrized by a single complex coordinate Z given by the cross ratio of four complex numbers obtained by stereographically projecting the unit face normals onto the complex plane.

This Demonstration illustrates how this works in the simplest case of a tetrahedron T whose four face areas are equal. For convenience, the cross-ratio coordinate Z is shifted and rescaled

to z=(2Z-1)/Sqrt[3] so that the regular tetrahedron corresponds to z=i, in which case the upper half-plane is mapped conformally into the unit disc w=(i-z)/(i+z). The equi-area tetrahedron

T is then drawn as a function of the unit disc coordinate w.

Reference: L. Freidel, K. Krasnov, and E. R. Livine, "Holomorphic Factorization for a Quantum Tetrahedron".

Quantum tetrahedron volume, area and angle eigenvalues

by David Horgan.

In this interact I calculate the angle, area and volume for a quantum tetrahedron The angle is found using the expression: theta = arccos((j3*(j3+1)-(j1*(j1+j1)-j2*(j2+1))/(2*sqrt(j1*(j1+j1)*j2*(j2+1)))) The area is found using the expression: A=sqrt(j1*(j1+1)) The volume is fund using the expression V^2 =M = 2/9(real antisymmetrix matrix)

Values of constants gamma is Immirzi parameter gamma =numerical_approx( ln(2)/(pi*sqrt(2))) #G = 6.63*10^-11 hbar= (1.61619926*10^-35)/(2*pi) lp is the planck length lp3=6*10^-104 Reference: Bohr-Sommerfeld Quantization of Space by Eugenio Bianchi and Hal M. Haggard. Reference: Shape in an atom of space: exploring quantum geometry phenomenology by Seth A. Major.

Research Blog: http://quantumtetrahedron.wordpress.com

Given the values of J1, J2, J3 and J4 this interact calculates the volume, area and angle eigenvalues of a quantum tetrahedron.

Quantum tetrahedron Area Operator eigenvalues

by David Horgan.

Given the values of J1, J2, J3 and J4 this interact calculates the area eigenvalues of a quantum tetrahedron.

interact/Loop Quantum Gravity (last edited 2019-04-06 16:42:59 by chapoton)