Outline Introduction to FLINT

Parallel Processing in Algebraic Number Theory

Bill Hart

February 1, 2007

Bill Hart Parallel Processing in Algebraic Number Theory

同 と く き と く き と

Introduction to FLINT

Fast Library for Number Theory

・ロン ・回と ・ヨン・

FLINT: Fast Library for Number Theory

Jointly Maintained by David Harvey (Harvard) and Bill Hart (Warwick)

イロン イヨン イヨン イヨン

Fast Library for Number Theory

FLINT Design Philosophy

Faster than all available alternatives.

・ロン ・回と ・ヨン・

- Faster than all available alternatives.
- Asymptotically Fast Algorithms.

(4 同) (4 回) (4 回)

- Faster than all available alternatives.
- Asymptotically Fast Algorithms.
- Library written in C.

(4 同) (4 回) (4 回)

- Faster than all available alternatives.
- Asymptotically Fast Algorithms.
- Library written in C.
- Based on GMP.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Faster than all available alternatives.
- Asymptotically Fast Algorithms.
- Library written in C.
- Based on GMP.
- Extensively Tested.

-2

- Faster than all available alternatives.
- Asymptotically Fast Algorithms.
- Library written in C.
- Based on GMP.
- Extensively Tested.
- Extensively Profiled.

 -2

- Faster than all available alternatives.
- Asymptotically Fast Algorithms.
- Library written in C.
- Based on GMP.
- Extensively Tested.
- Extensively Profiled.
- Support for Parallel Processing.

• All GMP integer functions (mpz_add \rightarrow Z_add).

・ 回 と ・ ヨ と ・ ヨ と

- All GMP integer functions (mpz_add \rightarrow Z_add).
- Additional functions for $\mathbb Z$ and modulo arithmetic.

(4回) (4回) (日)

- All GMP integer functions (mpz_add \rightarrow Z_add).
- Additional functions for \mathbb{Z} and modulo arithmetic.
- Integer Factorisation (Multiple Polynomial Quadratic Sieve).

向下 イヨト イヨト

- All GMP integer functions (mpz_add \rightarrow Z_add).
- ► Additional functions for Z and modulo arithmetic.
- Integer Factorisation (Multiple Polynomial Quadratic Sieve).
- Some polynomial arithmetic, including asymptotically fast polynomial multiplication.

- All GMP integer functions (mpz_add \rightarrow Z_add).
- ► Additional functions for Z and modulo arithmetic.
- Integer Factorisation (Multiple Polynomial Quadratic Sieve).
- Some polynomial arithmetic, including asymptotically fast polynomial multiplication.
- Approximately 21,000 lines of C code so far (including profiling and test code).

Z - Integer Arithmetic.

・ロン ・回と ・ヨン・

- Z Integer Arithmetic.
- ▶ Zmod Arithmetic in $\mathbb{Z}/n\mathbb{Z}$.

・ロト ・回ト ・ヨト ・ヨト

- Z Integer Arithmetic.
- ▶ Zmod Arithmetic in $\mathbb{Z}/n\mathbb{Z}$.
- ► Zpoly Polynomials over ℤ.

(4回) (4回) (4回)

- Z Integer Arithmetic.
- ▶ Zmod Arithmetic in $\mathbb{Z}/n\mathbb{Z}$.
- ► Zpoly Polynomials over Z.
- \blacktriangleright Zvec Vectors over \mathbb{Z} .

・ 同 ト ・ ヨ ト ・ ヨ ト

- Z Integer Arithmetic.
- ▶ Zmod Arithmetic in $\mathbb{Z}/n\mathbb{Z}$.
- ► Zpoly Polynomials over Z.
- ► Zvec Vectors over Z.
- ▶ Zmat Linear algebra over ℤ.

向下 イヨト イヨト

- Z Integer Arithmetic.
- ▶ Zmod Arithmetic in $\mathbb{Z}/n\mathbb{Z}$.
- ► Zpoly Polynomials over Z.
- Zvec Vectors over \mathbb{Z} .
- ▶ Zmat Linear algebra over ℤ.
- ► Z_p p-adics.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Z Integer Arithmetic.
- ▶ Zmod Arithmetic in $\mathbb{Z}/n\mathbb{Z}$.
- ► Zpoly Polynomials over Z.
- ► Zvec Vectors over Z.
- ▶ Zmat Linear algebra over ℤ.
- ► Z_p p-adics.
- ▶ GF2 Sparse and dense matrices over GF2.

伺 ト イヨト イヨト

- Z Integer Arithmetic.
- ▶ Zmod Arithmetic in $\mathbb{Z}/n\mathbb{Z}$.
- ► Zpoly Polynomials over Z.
- ► Zvec Vectors over Z.
- ▶ Zmat Linear algebra over ℤ.
- Z_p p-adics.
- ▶ GF2 Sparse and dense matrices over GF2.
- QNF Quadratic number fields.

向下 イヨト イヨト

- Z Integer Arithmetic.
- ▶ Zmod Arithmetic in $\mathbb{Z}/n\mathbb{Z}$.
- ► Zpoly Polynomials over Z.
- ► Zvec Vectors over Z.
- ▶ Zmat Linear algebra over ℤ.
- Z_p p-adics.
- ► GF2 Sparse and dense matrices over GF2.
- QNF Quadratic number fields.
- NF General number fields.

向下 イヨト イヨト

- Z Integer Arithmetic.
- ▶ Zmod Arithmetic in $\mathbb{Z}/n\mathbb{Z}$.
- ► Zpoly Polynomials over Z.
- ► Zvec Vectors over Z.
- ▶ Zmat Linear algebra over ℤ.
- Z_p p-adics.
- ► GF2 Sparse and dense matrices over GF2.
- QNF Quadratic number fields.
- NF General number fields.
- ?? Whatever people contribute.

向下 イヨト イヨト

Exponentiation.

・ロト ・回ト ・ヨト ・ヨト

- Exponentiation.
- Modular multiplication, modular inversion, modular square root (mod p or mod p^k), CRT, modular exponentiation.

向下 イヨト イヨト

- Exponentiation.
- Modular multiplication, modular inversion, modular square root (mod p or mod p^k), CRT, modular exponentiation.
- ▶ Next prime, random prime, extended GCD, GCD.

向下 イヨト イヨト

- Exponentiation.
- Modular multiplication, modular inversion, modular square root (mod p or mod p^k), CRT, modular exponentiation.
- ► Next prime, random prime, extended GCD, GCD.
- Integer multiplication (faster than GMP 4.2.1 with Pierrick Gaudry's AMD64 patches for more than 164000 bit operands).

向下 イヨト イヨト

- Exponentiation.
- Modular multiplication, modular inversion, modular square root (mod p or mod p^k), CRT, modular exponentiation.
- ► Next prime, random prime, extended GCD, GCD.
- Integer multiplication (faster than GMP 4.2.1 with Pierrick Gaudry's AMD64 patches for more than 164000 bit operands).
- Block Lanczos code (Jason Papadopoulous).

向下 イヨト イヨト

- Exponentiation.
- Modular multiplication, modular inversion, modular square root (mod p or mod p^k), CRT, modular exponentiation.
- ► Next prime, random prime, extended GCD, GCD.
- Integer multiplication (faster than GMP 4.2.1 with Pierrick Gaudry's AMD64 patches for more than 164000 bit operands).
- Block Lanczos code (Jason Papadopoulous).
- Polynomial root finding code (Jason P. not yet integrated).

- Exponentiation.
- Modular multiplication, modular inversion, modular square root (mod p or mod p^k), CRT, modular exponentiation.
- ► Next prime, random prime, extended GCD, GCD.
- Integer multiplication (faster than GMP 4.2.1 with Pierrick Gaudry's AMD64 patches for more than 164000 bit operands).
- Block Lanczos code (Jason Papadopoulous).
- Polynomial root finding code (Jason P. not yet integrated).
- ► SQUFOF factoring algorithm (Jason P. not yet integrated).

- Exponentiation.
- Modular multiplication, modular inversion, modular square root (mod p or mod p^k), CRT, modular exponentiation.
- ► Next prime, random prime, extended GCD, GCD.
- Integer multiplication (faster than GMP 4.2.1 with Pierrick Gaudry's AMD64 patches for more than 164000 bit operands).
- Block Lanczos code (Jason Papadopoulous).
- Polynomial root finding code (Jason P. not yet integrated).
- SQUFOF factoring algorithm (Jason P. not yet integrated).
- Self initialising multiple polynomial quadratic sieve (for integer factorization).

- Exponentiation.
- Modular multiplication, modular inversion, modular square root (mod p or mod p^k), CRT, modular exponentiation.
- Next prime, random prime, extended GCD, GCD.
- Integer multiplication (faster than GMP 4.2.1 with Pierrick) Gaudry's AMD64 patches for more than 164000 bit operands).
- Block Lanczos code (Jason Papadopoulous).
- Polynomial root finding code (Jason P. not yet integrated).
- SQUFOF factoring algorithm (Jason P. not yet integrated).
- Self initialising multiple polynomial quadratic sieve (for integer factorization).
- Memory management for single mpz_t's and arrays of mpz_t's, arrays of limbs.

Polynomial Arithmetic Available so far

Allocate, deallocate, copy, clear.

・ 回 と ・ ヨ と ・ ヨ と

Polynomial Arithmetic Available so far

- Allocate, deallocate, copy, clear.
- Maximum coefficient size, whether coefficients are signed or unsigned, maximum length.

(1日) (日) (日)

- Allocate, deallocate, copy, clear.
- Maximum coefficient size, whether coefficients are signed or unsigned, maximum length.
- Add, subtract, multiply by scalar.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Allocate, deallocate, copy, clear.
- Maximum coefficient size, whether coefficients are signed or unsigned, maximum length.
- Add, subtract, multiply by scalar.
- Truncate, rotate.

伺下 イヨト イヨト

- Allocate, deallocate, copy, clear.
- Maximum coefficient size, whether coefficients are signed or unsigned, maximum length.
- Add, subtract, multiply by scalar.
- Truncate, rotate.
- Polynomial multiplication (including Karatsuba, RadixMul, Schoenhage-Strassen, Kronecker-Strassen).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Allocate, deallocate, copy, clear.
- Maximum coefficient size, whether coefficients are signed or unsigned, maximum length.
- Add, subtract, multiply by scalar.
- Truncate, rotate.
- Polynomial multiplication (including Karatsuba, RadixMul, Schoenhage-Strassen, Kronecker-Strassen).
- Many test and profiling functions.

・ 同 ト ・ ヨ ト ・ ヨ ト

Why do we need a new Library?

What about Pari, NTL, LiDIA, others?

・ロト ・回ト ・ヨト ・ヨト

Why do we need a new Library?

- What about Pari, NTL, LiDIA, others?
- What about MAGMA, MAPLE, Mathematica, etc?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Why do we need a new Library?

- What about Pari, NTL, LiDIA, others?
- What about MAGMA, MAPLE, Mathematica, etc?
- SAGE seems to be doing just fine building in functionality from NTL and Pari and others.

(4月) (4日) (4日)

Fast Library for Number Theory

Sieve timing comparisons

Digits	Msieve	FLINT	Pari
C41	0.33s	0.24s	0.34s
C51	1.4s	1.4s	3.78s
C61	9s	15.6s	61.3s
C71	90s	187s	392s
C81	820s	2160s	7985s
C86	4200s	7380s	Umm yeah

Timings for a 1.8GHz Opteron (sage.math)

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Fast Library for Number Theory

Sieve timing comparisons

Digits	Msieve	FLINT	Pari
C41	0.44s	0.40s	1.1s
C51	1.97s	1.82s	5.5s
C61	13s	18s	90s
C71	133s	187s	690s
C76	568s	898	2970s
C81	1045s	2320s	7920s
C86	5880s	8580s	Ahem

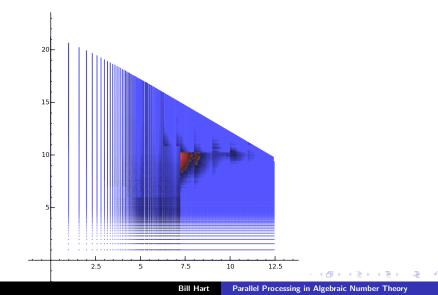
Timings for an Athlon XP 2000+ (laptop)

・ロト ・回ト ・ヨト ・ヨト

Outline Introduction to FLINT

Fast Library for Number Theory

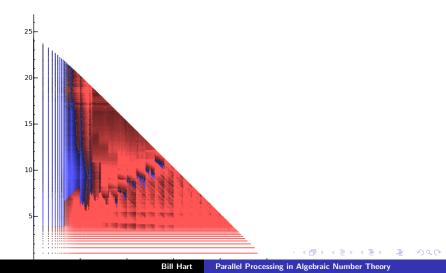
Polynomial Multiplication: NTL vs Pari (Pari = Red)



Outline Introduction to FLINT

Fast Library for Number Theory

Polynomial Multiplication: MAGMA vs NTL (MAGMA = Red)



Radix Multiplication (used by NTL - old algorithm)

(4回) (4回) (日)

- Radix Multiplication (used by NTL old algorithm)
- Schoenhage-Strassen (based on FFT's)

(1) マン・ション・

- Radix Multiplication (used by NTL old algorithm)
- Schoenhage-Strassen (based on FFT's)
- Kronecker-Schoenhage (combine into large integers and multiply)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Radix Multiplication (used by NTL old algorithm)
- Schoenhage-Strassen (based on FFT's)
- Kronecker-Schoenhage (combine into large integers and multiply)
- Karatsuba

・ 同 ト ・ ヨ ト ・ ヨ ト

- Radix Multiplication (used by NTL old algorithm)
- Schoenhage-Strassen (based on FFT's)
- Kronecker-Schoenhage (combine into large integers and multiply)
- Karatsuba
- Toom

・ 同 ト ・ ヨ ト ・ ヨ ト

Karatsuba Method

$$(a_1 + a_2 x^n)(b_1 + b_2 x^n) = a_1 b_1 + a_2 b_2 x^{2n} + (a_1 + a_2)(b_1 + b_2) x^n - a_1 b_1 x^n - a_2 b_2 x^n$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► A polynomial of degree n is completely determined by its values at n + 1 distinct points.

- ► A polynomial of degree n is completely determined by its values at n + 1 distinct points.
- $g(x) = f_1(x) * f_2(x)$ is determined by its value at 2n points, if f_1, f_2 have length n.

・ 同 ト ・ ヨ ト ・ ヨ ト

- A polynomial of degree n is completely determined by its values at n + 1 distinct points.
- $g(x) = f_1(x) * f_2(x)$ is determined by its value at 2n points, if f_1, f_2 have length n.
- Discrete Fourier Transform chooses 2n-th roots of unity as the points to evaluate at.

伺 ト イヨト イヨト

- ► A polynomial of degree n is completely determined by its values at n + 1 distinct points.
- $g(x) = f_1(x) * f_2(x)$ is determined by its value at 2n points, if f_1, f_2 have length n.
- Discrete Fourier Transform chooses 2n-th roots of unity as the points to evaluate at.
- Compute DFT of coefficients of f₁, compute DFT of coefficients of f₂, multiply the 2n values, perform an inverse transform.

・回 ・ ・ ヨ ・ ・ ヨ ・

- ► A polynomial of degree n is completely determined by its values at n + 1 distinct points.
- $g(x) = f_1(x) * f_2(x)$ is determined by its value at 2n points, if f_1, f_2 have length n.
- Discrete Fourier Transform chooses 2n-th roots of unity as the points to evaluate at.
- Compute DFT of coefficients of f₁, compute DFT of coefficients of f₂, multiply the 2n values, perform an inverse transform.
- FFT is a method for computing the DFT quickly.

- ► A polynomial of degree n is completely determined by its values at n + 1 distinct points.
- $g(x) = f_1(x) * f_2(x)$ is determined by its value at 2n points, if f_1, f_2 have length n.
- Discrete Fourier Transform chooses 2n-th roots of unity as the points to evaluate at.
- Compute DFT of coefficients of f₁, compute DFT of coefficients of f₂, multiply the 2n values, perform an inverse transform.
- ► FFT is a method for computing the DFT quickly.
- Schoenhage-Strassen technique works in the ring ℤ/(2ⁿ + 1)ℤ, for which 2 is a 2n-th root of unity.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ► A polynomial of degree n is completely determined by its values at n + 1 distinct points.
- $g(x) = f_1(x) * f_2(x)$ is determined by its value at 2n points, if f_1, f_2 have length n.
- Discrete Fourier Transform chooses 2n-th roots of unity as the points to evaluate at.
- Compute DFT of coefficients of f₁, compute DFT of coefficients of f₂, multiply the 2n values, perform an inverse transform.
- ► FFT is a method for computing the DFT quickly.
- Schoenhage-Strassen technique works in the ring ℤ/(2ⁿ + 1)ℤ, for which 2 is a 2n-th root of unity.
- Multiplications by roots of unity are now just bitshifts.

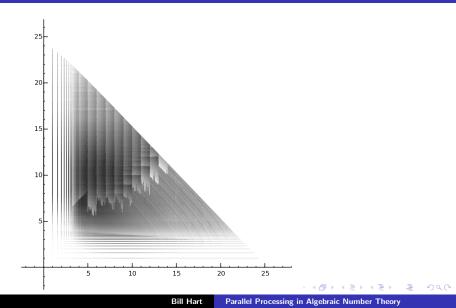
回 と く ヨ と く ヨ と

FFT(*A*, *m*, *w*):

A = vector length m, w = primitive m-th root of unity

```
if (m==1) return vector (a 0)
else {
 A_{even} = (a_0, a_2, \ldots, a_{m-2})
 A_{odd} = (a_1, a_3, \ldots, a_{m-1})
 F_{even} = FFT(A_{even}, m/2, w^2)
 F odd = FFT(A odd, m/2, w^2)
 F = new vector of length m
 x = 1
 for (j=0; j < m/2; ++j) {
   F[j] = F_even[j] + x*F_odd[j]
   F[j+m/2] = F_even[j] - x*F_odd[j]
   x = x * w
}
return F
```

What does MAGMA use?



► Variants of Schoenhage-Strassen and Kronecker-Schoenhage.

(1日) (日) (日)

- ► Variants of Schoenhage-Strassen and Kronecker-Schoenhage.
- Trick suggested by David Harvey and Paul Zimmerman for KS.

(4 同) (4 回) (4 回)

- Variants of Schoenhage-Strassen and Kronecker-Schoenhage.
- Trick suggested by David Harvey and Paul Zimmerman for KS.
- Bailey's four-step algorithm.

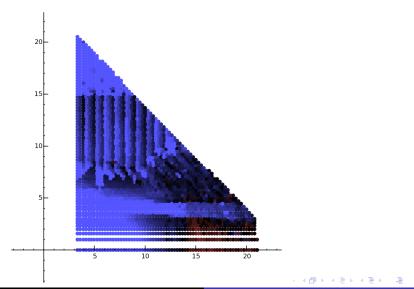
回 と く ヨ と く ヨ と

- Variants of Schoenhage-Strassen and Kronecker-Schoenhage.
- Trick suggested by David Harvey and Paul Zimmerman for KS.
- Bailey's four-step algorithm.
- ► Truncated FFT (with 2-step) Joris van der Hoeven.

・回 ・ ・ ヨ ・ ・ ヨ ・

Fast Library for Number Theory

FLINT vs MAGMA



Bill Hart Parallel Processing in Algebraic Number Theory

No global or static variables.

・ロン ・回と ・ヨン・

- No global or static variables.
- Memory management (needs to support multiple threads requesting memory).

・ 同 ト ・ ヨ ト ・ ヨ ト

- No global or static variables.
- Memory management (needs to support multiple threads requesting memory).
- Posix threads.

・ 同 ト ・ ヨ ト ・ ヨ ト

- No global or static variables.
- Memory management (needs to support multiple threads requesting memory).
- Posix threads.
- Very next version of GCC will support OpenMP.

向下 イヨト イヨト

- No global or static variables.
- Memory management (needs to support multiple threads requesting memory).
- Posix threads.
- Very next version of GCC will support OpenMP.
- Quadratic sieve can use disk based parallelism.

伺 ト イヨト イヨト

Our hackish attempt at pthreads

 Frustration at the lack of open source mathematics that use pthreads.

・ 回 と ・ ヨ と ・ ヨ と

Our hackish attempt at pthreads

- Frustration at the lack of open source mathematics that use pthreads.
- Read that 200,000 threads can be started by the kernel, per second.

Our hackish attempt at pthreads

- Frustration at the lack of open source mathematics that use pthreads.
- Read that 200,000 threads can be started by the kernel, per second.
- Threads may take some time to be scheduled (real-time threads).

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Some solutions?

• Queue of jobs from which threads can pull tasks.

・ロン ・回と ・ヨン・

Some solutions?

- Queue of jobs from which threads can pull tasks.
- Threads go to sleep when there is no work and wake up when a condition is met.

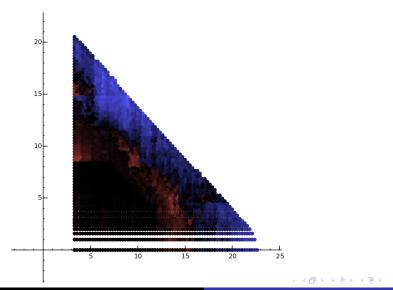
(1日) (日) (日)

Some solutions?

- Queue of jobs from which threads can pull tasks.
- Threads go to sleep when there is no work and wake up when a condition is met.
- ► For some problems, threads should not be used.

・ 同 ト ・ ヨ ト ・ ヨ ト

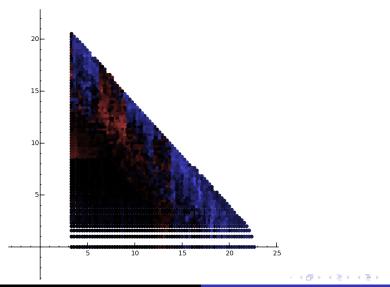
Two Threads versus None



Bill Hart Parallel Processing in Algebraic Number Theory

æ

Four Threads versus Two Threads



Bill Hart Parallel Processing in Algebraic Number Theory