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Python and IPython



Python
• Freely available (BSD license).

• Highly portable: OS X, Windows, Linux, supercomputers.

• Can be used interactively (like Matlab, Mathematica, IDL)

• Simple, expressive syntax readable by human beings.

• Supports OO, functional, generic and meta programming.

• Large community of scientific/HPC users.

• Powerful built-in data types and libraries

• Strings, lists, sets, dictionaries (hash tables)

• Networking, XML parsing, threading, regular expressions...

• Larger number of third party libraries for scientific computing

• Easy to wrap existing C/C++/Fortran codes



IPython:  Enhanced 
Interactive Python Shell

• Freely available (BSD license) @ http://ipython.scipy.org

• Goal:  provide an efficient environment for exploratory and interactive 
scientific computing.

• The de facto shell for scientific computing in Python.

• Available as a standard package on every major Linux distribution.  
Downloaded over 27,000 times in 2006 alone. 

• Interactive Shell for many other projects:

• Math (SAGE)

• Astronomy (PyRAF, CASA)

• Physics (Ganga, PyMAD)

• Biology (Pymerase)

• Web frameworks (Zope/Plone, Turbogears, Django)



IPython:  Capabilities

• Input/output histories.

• Interactive GUI control:  enables interactive plotting.

• Highly customizable:  extensible syntax, error handling,...

• Interactive control system:  magic commands.

• Dynamic introspection of nearly everything (objects, help, 
filesystem, etc.)

• Direct access to filesystem and shell.

• Integrated debugger and profiler support.

• Easy to embed: give any program an interactive console with 
one line of code.

• Interactive Parallel/Distributed computing...



Traditional Parallel
Computing



Compiled Languages
• C/C++/Fortran are FAST for computers, SLOW for you.

• Everything is low-level, you get nothing for free:

• Only primitive data types.

• Few built-in libraries.

• Manual memory management:  bugs and more bugs.

• With C/C++ you don’t even get built-in high 
performance numerical arrays.

• No interactive capabilities:  

• Endless edit/compile/execute cycles.

• Any change means recompilation.

• Awkward access to plotting, 3D visualization, system shell.



Message Passing Interface: MPI
• Pros

• Robust, optimized, standardized, portable, common.

• Existing parallel libraries (FFTW, ScaLAPACK, Trillinos, PETSc)

• Runs over Ethernet, Infiniband, Myrinet.

• Great at moving data around fast!

• Cons

• Trivial things are not trivial.  Lots of boilerplate code.

• Orthogonal to how scientists think and work.

• Static:  load balancing and fault tolerance are difficult to implement.

• Emphasis on compiled languages.

• Non-interactive and non-collaborative.

• Doesn’t play well with other tools:  GUIs, plotting, visualization, 
web.

• Labor intensive to learn and use properly.



Case Study: Parallel Jobs at 
NERSC in 2006

• NERSC = DOE Supercomputing center at Lawrence Berkeley 
National Laboratory

• Seaborg = IBM SP RS/6000 with 6080 CPUs 

• 90% of jobs used less than 113 CPUs

• Only 0.26% of jobs used more than 2048 CPUs

• Jacquard = 712 CPU Opteron system

• 50% of jobs used fewer than 15 CPUs

• Only 0.39% of jobs used more than 256 CPUs

* Statistics (used with permission) from NERSC users site (http://www.nersc.gov/nusers) 

http://www.nersc.gov/nusers
http://www.nersc.gov/nusers


Realities
• Developing highly parallel codes with these tools is 

extremely difficult and time consuming.

• When it comes to parallel computing WE (the 
software developers) are often the bottleneck.

• We spend most of our time writing code rather 
than waiting for those “slow” computers.

• With the advent of multi-core CPUs, this problem is 
coming to a laptop/desktop near you.

• Parallel speedups are not guaranteed!



Our Goals with IPython  
• Trivial parallel things should be trivial.

• Difficult parallel things should be possible.

• Make all stages of parallel computing fully interactive:  
development, debugging, testing, execution, monitoring,...

• Make parallel computing collaborative.

• More dynamic model for load balancing and fault tolerance.

• Seamless integration with other tools:  plotting/
visualization, system shell.

• Also want to keep the benefits of traditional approaches:

• Should be able to use MPI if it is appropriate.

• Should be easy to integrate compiled code and libraries.

• Support many types of parallelism.



Computing With 
Namespaces



Namespaces
• Namespace = a container for objects and their unique 

identifiers.

• An instruction stream causes a namespace to evolve with 
time.

• Interactive computing:  the instruction stream has a 
human agent as its runtime source at some level.

• A (namespace, instruction stream) is a higher level 
abstraction than a process or thread.

• Data in a namespace can be created inplace (by 
instructions) or by external I/O (disk, network).

• Thinking about namespaces allows us to abstract 
parallelism and interactivity in a useful way.
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Parallel Namespace Computing
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Important Points
• Requirements for Interactive Computation:

• Alice/Bob must be able to send instruction stream to a namespace.

• Alice/Bob must be able to push/pull objects to/from the namespace 
(disk, network).

• Requirements for Parallel Computation:

• Multiple namespaces and instruction streams (for general MIMD 
parallelism).

• Send data between namespaces (MPI is really good at this)

• Requirements for Interactive Parallel Computation:

• Alice/Bob must be able to send multiple instruction streams to 
multiple namespaces.

• Alice/Bob must be able to push/pull objects to/from the 
namespaces .

* These requirements hold for any type of parallelism



IPython’s Architecture
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Architecture Details
• The IPython Engine/Controller/Client are typically different 

processes.  Why not threads?

• Can be run in arbitrary configurations on laptops, clusters, 
supercomputers.

• Everything is asynchronous.  Can’t hack this on as an 
afterthought.  

• Must deal with long running commands that block all network 
traffic.

• Dynamic process model.  Engines and Clients can come and go 
at will at any time*. 

*Unless you are using MPI



Mapping Namespaces
To Various Models

of Parallel Computation



Key Points
• Most models of parallel/distributed computing can be mapped 

onto this architecture.

• Message Passing

• Task farming

• TupleSpaces

• BSP (Bulk Synchronous Parallel)

• Google’s MapReduce

• ???

• With IPython’s architecture all of these types of parallel 
computations can be done interactively and collaboratively.

• The mapping of these models onto our architecture is done 
using interfaces+adapters and requires very little code.



The IPython 
RemoteController

Interface



Overview
• This is a low-level interfaces that gives a user direct and 

detailed control over a set of running IPython Engines.

• Right now it is the default way of working with Engines.

• Good for:

• Coarse grained parallelism without MPI.

• Interactive steering of fine grained MPI codes.

• Quick and dirty parallelism.

• Not good for:

• Load balanced task farming.

• Just one example of how to work with engines.



Start Your Engines...
> ipcluster -n 4
Starting controller: Controller PID: 385
Starting engines:    Engines PIDs:   [386, 387, 388, 389]
Log files: /Users/bgranger/.ipython/log/ipcluster-385-*

Your cluster is up and running.

For interactive use, you can make a Remote Controller with:

import ipython1.kernel.api as kernel
ipc = kernel.RemoteController(('127.0.0.1',10105))

You can then cleanly stop the cluster from IPython using:

ipc.killAll(controller=True)

You can also hit Ctrl-C to stop it, or use from the cmd line:

kill -INT 384



Startup Details
• ipcluster can also start engines on other machines 

using ssh.

• For more complicated setups we have scripts to start 
the controller (ipcontroller) and engines (ipengine) 
separately.

• We routinely:

• Start engines using mpiexec/mpirun.

• Start engines on supercomputers that have batch 
systems (PBS, Loadleveler) and other crazy things.

• Not always trivial, but nothing magic going on.



Live Demo



Example 1:  Analysis of 
Large Data Sets

• IPython is being used at Tech-X for analysis of large data sets.

• Massively parallel simulations of electrons in a plasma generate lots 
of data:

• 10s-100s of Gb in 1000s of HDF5 files.

• Data analysis stages:

• Preprocessing/reduction of data.

• Run parallel algorithm over many parameters.

• Coarse grained parallelism (almost trivial parallelizable)

• Core algorithm was parallelized in 2 days.

• Data analysis time reduced from many hours to minutes.

• Gain benefits of interactivity.



Example 2:  Multiresolution 
Quantum Chemsitry

• A new family of algorithms for solving multidimensional PDEs 
which admit an integral formulation.

• Main target is the multiparticle Schrodinger equation: a linear, 
multivariable PDE where correlations are fundamental to the 
physics.

• Methods:

• Nonlinear approximations: unconstrained representations of 
the wavefunction.

• Adaptive multiresolution application of linear (integral and 
differential) operators in 3D, using Gaussian expansions for 
integral kernels.

• Adaptive accuracy control.



Example 2:  Multiresolution 
Quantum Chemsitry

• Minor modifications to our serial code and IPython 
machinery allowed us to easily distribute over a cluster.

• Next week will move to ORNL large systems.

• Talk to Fernando for details if you are interested.

• Robert Harrison will present the massively parallel 
evolution of these ideas on Friday here.



MPI
• Without full and robust MPI support, these tools 

would be a no-go for many applications

• Engines can be started using mpiexec and call 
MPI_Init.  From then on, instruction streams sent to 
engines can contain arbitrary MPI calls.

• Can use MPI through:

• Low-level C/C++/Fortran bindings

• Python bindings (see http://mpi4py.scipy.org)

• Remains fully interactive/collaborative.

• Fully supported today!

http://mpi4py.scipy.org
http://mpi4py.scipy.org


Task Based Computing

• Common style of parallelism for loosely coupled or 
independent tasks.

• Great when dynamic load balancing is needed.

• Similar to distributed SAGE.  Plan on working/talking 
with the SAGE developers about these ideas.

• This can be implemented by a very lightweight 
adapter around our core architecture.  You get a lot 
for free.  We take care of networking stuff.

• We have begun the initial work on this interface.



Stepping Back a Bit

• Event based systems are a nice alternative to threads:

• Scale to multiple CPU systems.

• Build asynchronous nature of things in at low level.

• No deadlocks to worry about.

• The networking framework used by IPython and SAGE 
(Twisted) has an abstraction (called a Deferred) for a 
result that will arrive at some point in the future:

• Like a promise in E

• We have an interface that uses Deferreds to 
encapsulate asynchronous results/errors.



Benefits of an Event Based 
System

• Arbitrary configurations of namespaces are 
immediately possible without worrying about 
deadlocks

• Our test suite create a controller/client and 
multiple engines in a single process. 

• Possibilities:

• Hierarchies of client/controller/engine/client

• Recursive systems.



Error Propagation
• Building a distributed system is easy...

• Unless you want to handle errors well.

• We have spent a lot of time working/thinking about 
this issue.  Not always obvious what should happen.

• Our goal:  error handling/propagation in a parallel/
distributed context should be a nice analytic 
continuation of what happens in a serial context.

• Remote exceptions should propagate to the user in a 
meaningful manner.

• Policy of safety:  don’t ever let errors pass silently.



This Week

• All the core developers of IPython’s parallel 
capabilities are here at the workshop.

• We will be working on the code and talking with 
people.

• We want feedback, good and bad.  Lots of things 
to talk about and work on.

• Want to talk/work with SAGE developers and 
others on parallel/distributed things. 



Conclusions

• Namespaces provide a useful starting point for 
thinking about interactive parallel computing.

• Interactivity is a separate question from the model of 
parallel computation.

• IPython provides interactivity for many kinds of 
parallelism.

• Lots of interesting questions about interactivity in 
event based systems to think about and explore.


