
Interactive Parallel
Computing with Python

and IPython
Brian Granger

Research Scientist
Tech-X Corporation, Boulder CO

Collaborators: Fernando Perez (CU Boulder), Benjamin Ragan-Kelley
(Undergraduate Student, SCU)

MSRI Workshop on Interactive Parallel Computation in Support of
Research in Algebra, Geometry and Number Theory (January 2007)

Python and IPython

Python
• Freely available (BSD license).

• Highly portable: OS X, Windows, Linux, supercomputers.

• Can be used interactively (like Matlab, Mathematica, IDL)

• Simple, expressive syntax readable by human beings.

• Supports OO, functional, generic and meta programming.

• Large community of scientific/HPC users.

• Powerful built-in data types and libraries

• Strings, lists, sets, dictionaries (hash tables)

• Networking, XML parsing, threading, regular expressions...

• Larger number of third party libraries for scientific computing

• Easy to wrap existing C/C++/Fortran codes

IPython: Enhanced
Interactive Python Shell

• Freely available (BSD license) @ http://ipython.scipy.org

• Goal: provide an efficient environment for exploratory and interactive
scientific computing.

• The de facto shell for scientific computing in Python.

• Available as a standard package on every major Linux distribution.
Downloaded over 27,000 times in 2006 alone.

• Interactive Shell for many other projects:

• Math (SAGE)

• Astronomy (PyRAF, CASA)

• Physics (Ganga, PyMAD)

• Biology (Pymerase)

• Web frameworks (Zope/Plone, Turbogears, Django)

IPython: Capabilities

• Input/output histories.

• Interactive GUI control: enables interactive plotting.

• Highly customizable: extensible syntax, error handling,...

• Interactive control system: magic commands.

• Dynamic introspection of nearly everything (objects, help,
filesystem, etc.)

• Direct access to filesystem and shell.

• Integrated debugger and profiler support.

• Easy to embed: give any program an interactive console with
one line of code.

• Interactive Parallel/Distributed computing...

Traditional Parallel
Computing

Compiled Languages
• C/C++/Fortran are FAST for computers, SLOW for you.

• Everything is low-level, you get nothing for free:

• Only primitive data types.

• Few built-in libraries.

• Manual memory management: bugs and more bugs.

• With C/C++ you don’t even get built-in high
performance numerical arrays.

• No interactive capabilities:

• Endless edit/compile/execute cycles.

• Any change means recompilation.

• Awkward access to plotting, 3D visualization, system shell.

Message Passing Interface: MPI
• Pros

• Robust, optimized, standardized, portable, common.

• Existing parallel libraries (FFTW, ScaLAPACK, Trillinos, PETSc)

• Runs over Ethernet, Infiniband, Myrinet.

• Great at moving data around fast!

• Cons

• Trivial things are not trivial. Lots of boilerplate code.

• Orthogonal to how scientists think and work.

• Static: load balancing and fault tolerance are difficult to implement.

• Emphasis on compiled languages.

• Non-interactive and non-collaborative.

• Doesn’t play well with other tools: GUIs, plotting, visualization,
web.

• Labor intensive to learn and use properly.

Case Study: Parallel Jobs at
NERSC in 2006

• NERSC = DOE Supercomputing center at Lawrence Berkeley
National Laboratory

• Seaborg = IBM SP RS/6000 with 6080 CPUs

• 90% of jobs used less than 113 CPUs

• Only 0.26% of jobs used more than 2048 CPUs

• Jacquard = 712 CPU Opteron system

• 50% of jobs used fewer than 15 CPUs

• Only 0.39% of jobs used more than 256 CPUs

* Statistics (used with permission) from NERSC users site (http://www.nersc.gov/nusers)

http://www.nersc.gov/nusers
http://www.nersc.gov/nusers

Realities
• Developing highly parallel codes with these tools is

extremely difficult and time consuming.

• When it comes to parallel computing WE (the
software developers) are often the bottleneck.

• We spend most of our time writing code rather
than waiting for those “slow” computers.

• With the advent of multi-core CPUs, this problem is
coming to a laptop/desktop near you.

• Parallel speedups are not guaranteed!

Our Goals with IPython
• Trivial parallel things should be trivial.

• Difficult parallel things should be possible.

• Make all stages of parallel computing fully interactive:
development, debugging, testing, execution, monitoring,...

• Make parallel computing collaborative.

• More dynamic model for load balancing and fault tolerance.

• Seamless integration with other tools: plotting/
visualization, system shell.

• Also want to keep the benefits of traditional approaches:

• Should be able to use MPI if it is appropriate.

• Should be easy to integrate compiled code and libraries.

• Support many types of parallelism.

Computing With
Namespaces

Namespaces
• Namespace = a container for objects and their unique

identifiers.

• An instruction stream causes a namespace to evolve with
time.

• Interactive computing: the instruction stream has a
human agent as its runtime source at some level.

• A (namespace, instruction stream) is a higher level
abstraction than a process or thread.

• Data in a namespace can be created inplace (by
instructions) or by external I/O (disk, network).

• Thinking about namespaces allows us to abstract
parallelism and interactivity in a useful way.

Serial Namespace Computing

a
a

foo
bar

b
result

c

foo

Instructions
Data from Network/Disk

Bob

Parallel Namespace Computing

a
c

foo

c
foo
bar

c
foo
bar

a b
b

foo

b
foo
bar

foo

Alice

Important Points
• Requirements for Interactive Computation:

• Alice/Bob must be able to send instruction stream to a namespace.

• Alice/Bob must be able to push/pull objects to/from the namespace
(disk, network).

• Requirements for Parallel Computation:

• Multiple namespaces and instruction streams (for general MIMD
parallelism).

• Send data between namespaces (MPI is really good at this)

• Requirements for Interactive Parallel Computation:

• Alice/Bob must be able to send multiple instruction streams to
multiple namespaces.

• Alice/Bob must be able to push/pull objects to/from the
namespaces .

* These requirements hold for any type of parallelism

IPython’s Architecture

IPython
Engine

IPython
Controller

Client

IPython
Engine

IPython
Engine

IPython
Engine

Alice

Instructions
Objects

Client

Bob

Namespaces

Architecture Details
• The IPython Engine/Controller/Client are typically different

processes. Why not threads?

• Can be run in arbitrary configurations on laptops, clusters,
supercomputers.

• Everything is asynchronous. Can’t hack this on as an
afterthought.

• Must deal with long running commands that block all network
traffic.

• Dynamic process model. Engines and Clients can come and go
at will at any time*.

*Unless you are using MPI

Mapping Namespaces
To Various Models

of Parallel Computation

Key Points
• Most models of parallel/distributed computing can be mapped

onto this architecture.

• Message Passing

• Task farming

• TupleSpaces

• BSP (Bulk Synchronous Parallel)

• Google’s MapReduce

• ???

• With IPython’s architecture all of these types of parallel
computations can be done interactively and collaboratively.

• The mapping of these models onto our architecture is done
using interfaces+adapters and requires very little code.

The IPython
RemoteController

Interface

Overview
• This is a low-level interfaces that gives a user direct and

detailed control over a set of running IPython Engines.

• Right now it is the default way of working with Engines.

• Good for:

• Coarse grained parallelism without MPI.

• Interactive steering of fine grained MPI codes.

• Quick and dirty parallelism.

• Not good for:

• Load balanced task farming.

• Just one example of how to work with engines.

Start Your Engines...
> ipcluster -n 4
Starting controller: Controller PID: 385
Starting engines: Engines PIDs: [386, 387, 388, 389]
Log files: /Users/bgranger/.ipython/log/ipcluster-385-*

Your cluster is up and running.

For interactive use, you can make a Remote Controller with:

import ipython1.kernel.api as kernel
ipc = kernel.RemoteController(('127.0.0.1',10105))

You can then cleanly stop the cluster from IPython using:

ipc.killAll(controller=True)

You can also hit Ctrl-C to stop it, or use from the cmd line:

kill -INT 384

Startup Details
• ipcluster can also start engines on other machines

using ssh.

• For more complicated setups we have scripts to start
the controller (ipcontroller) and engines (ipengine)
separately.

• We routinely:

• Start engines using mpiexec/mpirun.

• Start engines on supercomputers that have batch
systems (PBS, Loadleveler) and other crazy things.

• Not always trivial, but nothing magic going on.

Live Demo

Example 1: Analysis of
Large Data Sets

• IPython is being used at Tech-X for analysis of large data sets.

• Massively parallel simulations of electrons in a plasma generate lots
of data:

• 10s-100s of Gb in 1000s of HDF5 files.

• Data analysis stages:

• Preprocessing/reduction of data.

• Run parallel algorithm over many parameters.

• Coarse grained parallelism (almost trivial parallelizable)

• Core algorithm was parallelized in 2 days.

• Data analysis time reduced from many hours to minutes.

• Gain benefits of interactivity.

Example 2: Multiresolution
Quantum Chemsitry

• A new family of algorithms for solving multidimensional PDEs
which admit an integral formulation.

• Main target is the multiparticle Schrodinger equation: a linear,
multivariable PDE where correlations are fundamental to the
physics.

• Methods:

• Nonlinear approximations: unconstrained representations of
the wavefunction.

• Adaptive multiresolution application of linear (integral and
differential) operators in 3D, using Gaussian expansions for
integral kernels.

• Adaptive accuracy control.

Example 2: Multiresolution
Quantum Chemsitry

• Minor modifications to our serial code and IPython
machinery allowed us to easily distribute over a cluster.

• Next week will move to ORNL large systems.

• Talk to Fernando for details if you are interested.

• Robert Harrison will present the massively parallel
evolution of these ideas on Friday here.

MPI
• Without full and robust MPI support, these tools

would be a no-go for many applications

• Engines can be started using mpiexec and call
MPI_Init. From then on, instruction streams sent to
engines can contain arbitrary MPI calls.

• Can use MPI through:

• Low-level C/C++/Fortran bindings

• Python bindings (see http://mpi4py.scipy.org)

• Remains fully interactive/collaborative.

• Fully supported today!

http://mpi4py.scipy.org
http://mpi4py.scipy.org

Task Based Computing

• Common style of parallelism for loosely coupled or
independent tasks.

• Great when dynamic load balancing is needed.

• Similar to distributed SAGE. Plan on working/talking
with the SAGE developers about these ideas.

• This can be implemented by a very lightweight
adapter around our core architecture. You get a lot
for free. We take care of networking stuff.

• We have begun the initial work on this interface.

Stepping Back a Bit

• Event based systems are a nice alternative to threads:

• Scale to multiple CPU systems.

• Build asynchronous nature of things in at low level.

• No deadlocks to worry about.

• The networking framework used by IPython and SAGE
(Twisted) has an abstraction (called a Deferred) for a
result that will arrive at some point in the future:

• Like a promise in E

• We have an interface that uses Deferreds to
encapsulate asynchronous results/errors.

Benefits of an Event Based
System

• Arbitrary configurations of namespaces are
immediately possible without worrying about
deadlocks

• Our test suite create a controller/client and
multiple engines in a single process.

• Possibilities:

• Hierarchies of client/controller/engine/client

• Recursive systems.

Error Propagation
• Building a distributed system is easy...

• Unless you want to handle errors well.

• We have spent a lot of time working/thinking about
this issue. Not always obvious what should happen.

• Our goal: error handling/propagation in a parallel/
distributed context should be a nice analytic
continuation of what happens in a serial context.

• Remote exceptions should propagate to the user in a
meaningful manner.

• Policy of safety: don’t ever let errors pass silently.

This Week

• All the core developers of IPython’s parallel
capabilities are here at the workshop.

• We will be working on the code and talking with
people.

• We want feedback, good and bad. Lots of things
to talk about and work on.

• Want to talk/work with SAGE developers and
others on parallel/distributed things.

Conclusions

• Namespaces provide a useful starting point for
thinking about interactive parallel computing.

• Interactivity is a separate question from the model of
parallel computation.

• IPython provides interactivity for many kinds of
parallelism.

• Lots of interesting questions about interactivity in
event based systems to think about and explore.

