
Moving Sca/Lapack to Higher Precision

Moving Sca/Lapack to Higher Precision
without too much work

Yozo Hida
yozo@cs.berkeley.edu

Computer Science Division
EECS Department

U.C. Berkeley

January 30, 2007

Yozo Hida Moving Lapack to Higher Precision without too much Work 1/ 39

Moving Sca/Lapack to Higher Precision

Outline

Outline

Current State of Lapack and ScaLapack

Some high precision packages

Things to Consider when Using Higher Precision

Converting Lapack to Higher Precisions

Other Methods of Increasing Accuracy

Conclusion

Future Work

Yozo Hida Moving Lapack to Higher Precision without too much Work 2/ 39

Moving Sca/Lapack to Higher Precision

Current State of Lapack and ScaLapack

Outline

Current State of Lapack and ScaLapack

Some high precision packages

Things to Consider when Using Higher Precision

Converting Lapack to Higher Precisions

Other Methods of Increasing Accuracy

Conclusion

Future Work

Yozo Hida Moving Lapack to Higher Precision without too much Work 3/ 39

Moving Sca/Lapack to Higher Precision

Current State of Lapack and ScaLapack

Current Status

I Lapack 3.1 has been released.

I Improved MRRR algorithm for symmetric eigenproblem.

2006 SIAM SIAG LA Prize winning algorithm of Dhillon, Parlett

I Faster Hessenberg QR (up to 10×).
2003 SIAM SIAG LA Prize winning algorithm of

Braman, Byers and Mathias.

I Faster Hessenberg, tridiagonal, bidiagonal reductions.
I Mixed precision iterative refinement.
I Thread safety (save and data statements removed).
I Many bug fixes.

I Feedback welcome: http://www.netlib.org/lapack-dev/

Yozo Hida Moving Lapack to Higher Precision without too much Work 4/ 39

http://www.netlib.org/lapack-dev/

Moving Sca/Lapack to Higher Precision

Current State of Lapack and ScaLapack

Current Activities

I Faster algorithms.
I Recursive blocked layouts.
I Better QZ.
I O(n2) companion matrix solver (polynomial roots).

I More accurate algorithms.
I Extra-precise iterative refinement.
I Jacobi SVD.
I Higher precisions.

I Expanded contents: More Lapack in ScaLapack.

I Automated performance tuning.

I Improve ease of use.

I Community involvement (this means you!)

See www.cs.berkeley.edu/∼demmel for details.

Yozo Hida Moving Lapack to Higher Precision without too much Work 5/ 39

www.cs.berkeley.edu/~demmel

Moving Sca/Lapack to Higher Precision

Current State of Lapack and ScaLapack

Some Participants – more are welcome!

I UC Berkeley
Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett, Xiaoye Li, Osni Marques,

Christof Vömel, David Bindel, Yozo Hida, Jason Riedy, Jianlin Xia, Jiang Zhu

I U. Tennessee, Knoxville
Jack Dongarra, Victor Eijkhout, Julien Langou, Julie Langou, Piotr Luszczek,

Stan Tomov

I Other Academic Institutions
UT Austin, UC Davis, Florida IT, U Kansas, U Maryland, North Carolina SU,

San Jose SU, UC Santa Barbara TU Berlin, FU Hagen, U Madrid, U

Manchester, U Ume̊a, U Wuppertal, U Zagreb

I Research Institutions
CERFACS, LBNL

I Industrial Partners
Cray, HP, Intel, MathWorks, NAG, SGI

Yozo Hida Moving Lapack to Higher Precision without too much Work 6/ 39

Moving Sca/Lapack to Higher Precision

Current State of Lapack and ScaLapack

What could go in Lapack?

for all linear algebra problems do
for all matrix types do

for all data types do
for all architectures and networks do

for all programming interfaces do
Produce fastest algorithm providing acceptable
accuracy.
Produce most accurate algorithm running at
acceptable speed.

Some prioritization and automation is obviously needed.

Rest of the talk will concentrate on data types, specifically
precisions higher than double precision.

Yozo Hida Moving Lapack to Higher Precision without too much Work 7/ 39

Moving Sca/Lapack to Higher Precision

Current State of Lapack and ScaLapack

What could go in Lapack?

for all linear algebra problems do
for all matrix types do

for all data types do
for all architectures and networks do

for all programming interfaces do
Produce fastest algorithm providing acceptable
accuracy.
Produce most accurate algorithm running at
acceptable speed.

Some prioritization and automation is obviously needed.

Rest of the talk will concentrate on data types, specifically
precisions higher than double precision.

Yozo Hida Moving Lapack to Higher Precision without too much Work 7/ 39

Moving Sca/Lapack to Higher Precision

Current State of Lapack and ScaLapack

Motivation for higher precision

I Lapack and ScaLapack are widely used.

I User survey revealed small but significant portion of users
wanted precision higher than double precision.
http://icl.cs.utk.edu/lapack-forum/survey/

I We want to do least amount of work to support multiple
precision.

I We want to support codes like

n bits ← 32
repeat

n bits ← n bits × 2
Solve with n bits

until error < tol

Yozo Hida Moving Lapack to Higher Precision without too much Work 8/ 39

http://icl.cs.utk.edu/lapack-forum/survey/

Moving Sca/Lapack to Higher Precision

Some high precision packages

Outline

Current State of Lapack and ScaLapack

Some high precision packages

Things to Consider when Using Higher Precision

Converting Lapack to Higher Precisions

Other Methods of Increasing Accuracy

Conclusion

Future Work

Yozo Hida Moving Lapack to Higher Precision without too much Work 9/ 39

Moving Sca/Lapack to Higher Precision

Some high precision packages

Some Implementations of Higher Precision

I Fixed precision
I Compiler supported quad
I Double-double, Quad-double

I Arbitrary precision
I GMP / MPFR
I ARPREC

Yozo Hida Moving Lapack to Higher Precision without too much Work 10/ 39

Moving Sca/Lapack to Higher Precision

Some high precision packages

Double-double / Quad-double Package

I http://crd.lbl.gov/∼dhbailey/mpdist/.

I These represents a higher precision numbers as an
unevaluated sum of 2 or 4 double precision numbers.

I Example: 260 + 1 is represented as the pair (260, 1).

I Can represent about 32 / 64 digits of precision,

I Highly efficient algorithms due to their fixed, small size.

I Simple representation: fixed size array of doubles.
Makes it easy to allocate arrays and use MPI.

I Somewhat fuzzy definition of “machine precision” for these
numbers:
1 + 2−1000 can be represented exactly in double-double, but not

1 + 2−500 + 2−1000.

I Exponent range limited to that of double precision.

Yozo Hida Moving Lapack to Higher Precision without too much Work 11/ 39

http://crd.lbl.gov/~dhbailey/mpdist/

Moving Sca/Lapack to Higher Precision

Some high precision packages

Double-double / Quad-double Package

I C, C++ and Fortran 95 interfaces.

subroutine f main
use qdmodule
type (qd real) a, b
a = 1.d0
b = cos(a)**2 + sin(a)**2 - 1.d0
call qdwrite(6, b)
end subroutine

I Support for complex data types recently added.

Yozo Hida Moving Lapack to Higher Precision without too much Work 12/ 39

Moving Sca/Lapack to Higher Precision

Some high precision packages

GMP/MPFR

I Multiple-precision floating-point computations with correct
rounding.

I http://www.mpfr.org/

I Uses integer arithmetic instructions.

I Highly optimized for variety of platforms.

I Somewhat complicated data structure, mixing various types in
a C struct.
This makes inter-language operation, porting, and message
passing somewhat harder.

I C, C++ interfaces. No Fortran 95 interface.

Yozo Hida Moving Lapack to Higher Precision without too much Work 13/ 39

http://www.mpfr.org/

Moving Sca/Lapack to Higher Precision

Some high precision packages

ARPREC

I http://crd.lbl.gov/∼dhbailey/mpdist/.

I Uses simple floating point array to represent data.
This makes inter-language operation and message passing
easier.

I Slower than GMP. (sometimes by factor of 10).

I C, C++, and Fortran 95 interfaces.

subroutine f main
use mpmodule
type (mp real) a, b
call mpinit (500)
a = 1.d0
b = cos(a)**2 + sin(a)**2 - 1.d0
call mpwrite(6, b)
end subroutine

Yozo Hida Moving Lapack to Higher Precision without too much Work 14/ 39

http://crd.lbl.gov/~dhbailey/mpdist/

Moving Sca/Lapack to Higher Precision

Things to Consider when Using Higher Precision

Outline

Current State of Lapack and ScaLapack

Some high precision packages

Things to Consider when Using Higher Precision

Converting Lapack to Higher Precisions

Other Methods of Increasing Accuracy

Conclusion

Future Work

Yozo Hida Moving Lapack to Higher Precision without too much Work 15/ 39

Moving Sca/Lapack to Higher Precision

Things to Consider when Using Higher Precision

Things to Consider

I Single source code for varying precision. This makes it much
easier to maintain code.

I Workspace allocation. We need to tell the user how much
workspace to allocate.

I Temporary variable allocation.

I Should we allow multiple precisions in one routine? Within
one matrix?

I How to adjust precision.

I Can multiple versions co-exist? Naming issues.

Yozo Hida Moving Lapack to Higher Precision without too much Work 16/ 39

Moving Sca/Lapack to Higher Precision

Things to Consider when Using Higher Precision

Workspace Allocation

Many Lapack routines requires workspaces.
How should we specify the size?

I by number of bytes? Doesn’t work well in Fortran.

I by number of bignum slots? Works OK if every bignum in the
workspace has the same size.

We also like the workspace to have some contiguity for cache
friendliness and ease of message passing.

Yozo Hida Moving Lapack to Higher Precision without too much Work 17/ 39

Moving Sca/Lapack to Higher Precision

Things to Consider when Using Higher Precision

Temporary Variable Allocation

Memory for temporary variables need to be allocated somewhere:

x = a + b + c

The temporary result (a + b) must be stored somewhere.

I Have the compiler automatically allocate (for fixed precisions),

I Use external malloc routine,

I Explicitly allocate.

Yozo Hida Moving Lapack to Higher Precision without too much Work 18/ 39

Moving Sca/Lapack to Higher Precision

Things to Consider when Using Higher Precision

Fixed vs. Variable Precision

I Memory allocation: how much? when? where?

I Variable precision allows us to support codes like

n bits ← 32
repeat

n bits ← n bits × 2
Solve with n bits

until error < tol

Yozo Hida Moving Lapack to Higher Precision without too much Work 19/ 39

Moving Sca/Lapack to Higher Precision

Things to Consider when Using Higher Precision

Fixed Precision

This is the easiest approach.

I Many compilers (not all) provide support for quad precision.

I One compiler (OMF77) even supports multi-precision
variables (precision is compile-time selected).

I Fortran 90 modules and interfaces can be used to provide
operator overloading to custom types (double-double,
quad-double).

I Memory allocation issues can be handled automatically.

Yozo Hida Moving Lapack to Higher Precision without too much Work 20/ 39

Moving Sca/Lapack to Higher Precision

Things to Consider when Using Higher Precision

Maximum Precision

I User specifies maximum precision at compile time.

I At run time, the program specifies the precision to be used
(less than the maximum specified at compile time).

I Memory allocation issues can be handled automatically.

I Wastes memory if precision used is much smaller than the
maximum precision.

Fortran 95 interface of ARPREC currently works in this mode.

Yozo Hida Moving Lapack to Higher Precision without too much Work 21/ 39

Moving Sca/Lapack to Higher Precision

Things to Consider when Using Higher Precision

Variable Precision

I User can specify precision to use at run-time.
I Memory allocation issues can get tricky:

I Memory must be allocated dynamically.
I For cache (and communication) efficiency, we want to allocate

a single block for each matrix.
I Do we allow differing precisions within one algorithm? within

one matrix?

I Only allocates necessary memory.

C++ interface of ARPREC currently work in this mode. Work is
currently being done to make Fortran 95 interface works in this
mode as well.

Yozo Hida Moving Lapack to Higher Precision without too much Work 22/ 39

Moving Sca/Lapack to Higher Precision

Converting Lapack to Higher Precisions

Outline

Current State of Lapack and ScaLapack

Some high precision packages

Things to Consider when Using Higher Precision

Converting Lapack to Higher Precisions

Other Methods of Increasing Accuracy

Conclusion

Future Work

Yozo Hida Moving Lapack to Higher Precision without too much Work 23/ 39

Moving Sca/Lapack to Higher Precision

Converting Lapack to Higher Precisions

Modules

The high precision library provides a module that declares what
operators and functions are overloaded:

module mpmodule

type mp real

sequence
real*8 mpr(mpwds+5)

end type

interface operator (+)

module procedure mpadd

end interface

...

end module mpmodule

Yozo Hida Moving Lapack to Higher Precision without too much Work 24/ 39

Moving Sca/Lapack to Higher Precision

Converting Lapack to Higher Precisions

Modules

Lapack source is then modified slightly:

subroutine some lapack routine

! Use module for arbitrary precision

use mpmodule

! Declare variables in the desired format

type (mp real) a, b, c

! LAMCH must be provided by the

! arbitrary precision package provider

smlnum = lamch(a, ’Safe minimum’)

! ...the rest of the code ...

end subroutine

Yozo Hida Moving Lapack to Higher Precision without too much Work 25/ 39

Moving Sca/Lapack to Higher Precision

Converting Lapack to Higher Precisions

Assessment of Constants

Simple replacement of variable type is not enough:

x = 0.1d0 / 0.3d0

This line is interpreted by the compiler as double precision
constants and computation. Needs to be replaced with something
like,

x = mp real(0.1d0) / mp real(0.3d0)

or if dealing with constants not representable in double precision:

x = mp real("0.1") / mp real("0.3")
This is the most common “bugs” reported to us when people
convert their code to use our higher precision packages.

Yozo Hida Moving Lapack to Higher Precision without too much Work 26/ 39

Moving Sca/Lapack to Higher Precision

Converting Lapack to Higher Precisions

Naming Issues

How should a routine be named when using a new precision?

I Add a new prefix. DGESVX becomes QGESVX for quad,
QD GESVX for quad-double etc.
Leads to name explosion, but easier for inter-language
operations.

I Use generic names like “GESVX” and dispatch to correct
routines using Fortran 95 module and interface facilities.
Lapack 95 does this.

Yozo Hida Moving Lapack to Higher Precision without too much Work 27/ 39

Moving Sca/Lapack to Higher Precision

Converting Lapack to Higher Precisions

Limitations with Fortran 95

I Fortran 95 does not allow I/O routines to be overridden.
Lapack uses I/O only in the test code, so often we can just
print out the double-precision approximation instead.

I Fortran 95 does not have a general destructor, making it hard
to micromanage memory allocation / destruction. (Fortran
2003 fixes this).

I Annoying Fortran 77 formatting (e.g., line length).

Yozo Hida Moving Lapack to Higher Precision without too much Work 28/ 39

Moving Sca/Lapack to Higher Precision

Converting Lapack to Higher Precisions

Implementation

Currently implemented as a Perl script to convert Lapack sources
to perform

I use appropriate module file (provided by the dd / qd / arprec
packages),

I constant literal substitutions,

I handle Fortran data declarations,

I use a new prefix for each Lapack routines,

I substitute something appropriate for read / write statements,
and

I declare variables in appropriate types.

Passes many Lapack tests for Quad and QD precisions, including
linear systems.
Work being done on ARPREC implementations.

Yozo Hida Moving Lapack to Higher Precision without too much Work 29/ 39

Moving Sca/Lapack to Higher Precision

Other Methods of Increasing Accuracy

Outline

Current State of Lapack and ScaLapack

Some high precision packages

Things to Consider when Using Higher Precision

Converting Lapack to Higher Precisions

Other Methods of Increasing Accuracy

Conclusion

Future Work

Yozo Hida Moving Lapack to Higher Precision without too much Work 30/ 39

Moving Sca/Lapack to Higher Precision

Other Methods of Increasing Accuracy

Iterative Refinement

Use Newton’s iteration on r(x) = b−Ax but compute the residual
in double the working precision:

x̂← A−1b (using basic solution method)

repeat
r ← Ax̂− b (compute residual in doubled precision)

dx← A−1r (solve for correction)

x← x̂− dx (update solution)

until convergence or no progress

Yozo Hida Moving Lapack to Higher Precision without too much Work 31/ 39

Moving Sca/Lapack to Higher Precision

Other Methods of Increasing Accuracy

Iterative Refinement

Forward error vs. condition number

log
10

κnorm

lo
g
1
0
E

n
o
r
m

0 5 10 15
10

0

10
1

10
2

10
3

10
4

-8

-6

-4

-2

0

log
10

κnorm
lo

g
1
0
E

n
o
r
m

0 5 10 15
10

0

10
1

10
2

10
3

10
4

-8

-6

-4

-2

0

We can obtain small errors until condition number gets too bad; at
which point we just need more precision.

Yozo Hida Moving Lapack to Higher Precision without too much Work 32/ 39

Moving Sca/Lapack to Higher Precision

Other Methods of Increasing Accuracy

Accurate Summation

Theorem
Suppose we have n f -digit, base-b floating point numbers, and we
sum them in decreasing order of their exponent using a F -digit
accumulator. Then if n ≤ 1 + bF−f

1−b−f ≡ N then the computed sum
ŝ has a relative error bounded by∣∣∣∣s− ŝ

ŝ

∣∣∣∣ < 1
2

[
b + 1 +

3b−f

1− b1−f

]
b−f

For bf moderately large, relative error is bounded by just over
1
2(b + 1)b−f . If n ≥ N + 2, then relative error can be arbitrary.

Yozo Hida Moving Lapack to Higher Precision without too much Work 33/ 39

Moving Sca/Lapack to Higher Precision

Other Methods of Increasing Accuracy

Accurate Summation

If we use x86 80-bit floating point format as accumulator, we can
add 211 + 1 = 2049 doubles accurately.

Previous theorem is especially useful when dealing with
multi-precision variables, since

I sorting by exponent is often much faster, and

I we can often pick the size of the accumulator (F) to achieve a
desired accuracy, based on the number of terms to be added.

ARPREC uses b = 248 as the base, so we just need to keep an
extra word to compute the sum accurately.

Yozo Hida Moving Lapack to Higher Precision without too much Work 34/ 39

Moving Sca/Lapack to Higher Precision

Conclusion

Outline

Current State of Lapack and ScaLapack

Some high precision packages

Things to Consider when Using Higher Precision

Converting Lapack to Higher Precisions

Other Methods of Increasing Accuracy

Conclusion

Future Work

Yozo Hida Moving Lapack to Higher Precision without too much Work 35/ 39

Moving Sca/Lapack to Higher Precision

Conclusion

Conclusion

Once the high-precision library provides the appropriate module file
declaring the overridden functions, most of Lapack code can be
transformed to use them without too much effort.

Yozo Hida Moving Lapack to Higher Precision without too much Work 36/ 39

Moving Sca/Lapack to Higher Precision

Future Work

Outline

Current State of Lapack and ScaLapack

Some high precision packages

Things to Consider when Using Higher Precision

Converting Lapack to Higher Precisions

Other Methods of Increasing Accuracy

Conclusion

Future Work

Yozo Hida Moving Lapack to Higher Precision without too much Work 37/ 39

Moving Sca/Lapack to Higher Precision

Future Work

Future Work

I Exception handling.

I How much performance can we buy from using multi-core
Blas?

I Apply same technique to ScaLapack.

I Provide F95 interface to MPFR. Anyone?

Yozo Hida Moving Lapack to Higher Precision without too much Work 38/ 39

Moving Sca/Lapack to Higher Precision

Recent Results in Fast, Stable Matrix Computations

Recent Results in Fast, Stable Matrix Computations

I Current record for fast matrix multiplication: O(n2.38).
(Coppersmith & Winograd, 1990).

I Strassen et al. showed O(na) matmul implies O(na) matrix
inversion, determinant etc.

I New algorithm by Cohn, Kleinberg, Szegedy, Umans (2005)
I Uses Wedderburn’s Theorem to reduce matmul to FFT.
I Equals Coppersmith & Winograd, beating it depends on

finding right groups.

I New results (Demmel, Dumitriu, Holtz, Kleinberg, 2006)
I Above algorithm is stable (normwise).
I Any O(na) algorithm can converted to a stable one (based on

Raz, 2003)
I There are stable algorithms for QR, LU, solve, determinant

costing O(na) or O(na+ε) for any ε > 0.

Yozo Hida Moving Lapack to Higher Precision without too much Work 39/ 39

	Outline
	Current State of Lapack and ScaLapack
	Some high precision packages
	Things to Consider when Using Higher Precision
	Converting Lapack to Higher Precisions
	Other Methods of Increasing Accuracy
	Conclusion
	Future Work
	Recent Results in Fast, Stable Matrix Computations

