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Combinatorial Design Theory

Is it possible to arrange elements of a finite set into subsets so that
certain properties are satisfied?

Existence and non-existence results. Infinite classes.

Tools & concepts from: linear algerbra, algebra, group theory, number
theory, combinatorics, symbolic computation, numerical analysis.

Applications to: cryptography, optical communications, wireless
communications, coding theory.
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Weighing Matrices
A weighing matrix W = W (n, k) of weight k, is a square n× n

matrix with entries −1, 0, +1 having k non-zero entries per row and
column and inner product of distinct rows zero.

W ·W t = k In

Fact:
If there is a W (2n, k), n odd, then k ≤ 2n− 1 and k is the sum of two
squares.

Theorem:
If there exist two circulant matrices A, B of order n each, satisfying
A ·At + B ·Bt = k In, then there exists a W (2n, k).
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W (2n, k) =


 A B

−Bt At




W (2n, 2n− 1) constructed from two circulants: infinite class
W (2n, 2n− 3) constructed from two circulants: do not exist
Ten Open Problems: [C. Koukouvinos, J. Seberry, JSPI (81), 1999]
Do there exist

W (2 · 23, 41), W (2 · 25, 45), W (2 · 27, 49), W (2 · 29, 53), W (2 · 33, 61),

W (2 · 35, 65), W (2 · 39, 73), W (2 · 43, 81), W (2 · 45, 85), W (2 · 47, 89)

constructed from two circulants?

Common feature: W (2n, 2n− 5), for n = 23, . . . , 47.
Odd large weights.
R. Craigen, The structure of weighing matrices having large weights.
Des. Codes Cryptogr. (5) 1995
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Plan of attack:
Establish potential patterns for the locations of the 5 zeros in
solutions.

From 32n ∼ 23.17n ops, down to 22n−5 ops.

Idea:
Analyze the solutions sets for W (2n, 2n−5) for all odd n up to n = 15.
(bash/Maple meta-program, C code generation, supercomputing)

First observation: (4 zeros)

? . . . ? 0 0 0 0 ? . . . ?

a1 . . . an−2 an−1 an b1 b2 b3 . . . bn
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Second observation: (the remaining fifth zero)

a1 ? . . . ?︸ ︷︷ ︸
n−3

2 terms

0 ? . . . ? an−2︸ ︷︷ ︸
n−3

2 terms

0 0 0 0 b3 ? . . . ? bn︸ ︷︷ ︸
n−2 terms

a1 ? . . . ? an−2︸ ︷︷ ︸
n−2 terms

0 0 0 0 b3 ? . . . ?︸ ︷︷ ︸
n−3

2 terms

0 ? . . . ? bn︸ ︷︷ ︸
n−3

2 terms

CRYSTALIZATION When we fix the 4 zeros as indicated above,
then the fifth zero can only appear in exactly two possible places, in a
W (2n, 2n− 5) solution.

A proof will probably use Hall polynomials, PAF equations

Implication: Infinite Class of W (2n, 2n− 5)
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Results:

W(2*23,41) solution

-1 -1 -1 -1 -1 1 1 -1 1 -1 0 1 1 1 -1 -1 1 -1 -1 1 -1 0 0

0 0 -1 -1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1

W(2*25,45) solution

1 1 1 1 1 -1 -1 1 1 -1 1 0 1 -1 1 -1 -1 -1 -1 1 1 1 1 0 0

0 0 -1 -1 1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1

W(2*27,49) solution

1 1 1 1 1 1 -1 -1 -1 1 -1 -1 0 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 0 0

0 0 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1

W (2 · 29, 53) is still out of reach, as it still requires 253 ops.
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Periodic & non-periodic
autocorrelation function

The 2nd elementary symmetric function in n variables a1, . . . , an

σ2 = a1a2 + · · · an−1an =
∑

1≤i<j≤n

aiaj

plays a pivotal role in building W (2n, k).

PAF and NPAF concepts

σ2 is made up of
n−1∑

i=1

n− i =
n(n− 1)

2
=

(
n

2

)
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(pairwise different) quadratic monomials:




a1a2 a2a3 a3a4

... an−1an

a1a3 a2a4

...
... •

...
... a3an

... •
a1an−1 a2an • ... •
a1an • • ... •

︸ ︷︷ ︸
n−1 terms

︸ ︷︷ ︸
n−2 terms

︸ ︷︷ ︸
n−3 terms

︸ ︷︷ ︸
n−i terms

︸ ︷︷ ︸
1 term
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



a1a2 a2a3 a3a4

... an−1an ← NA(1)

a1a3 a2a4

...
... • ← NA(2)

...
... a3an

... • ← NA(3)

a1an−1 a2an • ... • ...
...

a1an • • ... • ← NA(n− 1)

Lemma:

NA(1) + NA(2) + . . . + NA(n− 1) = σ2

Fact:

PA(s) = NA(s) + NA(n− s), s = 1, . . . , n− 1

Lemma:

PA(1) + PA(2) + . . . + PA(n− 1) = 2σ2
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Fact:

NPAF = 0 =⇒ PAF = 0

The converse is not always true.
Definition:
Two sequences A = [a1, . . . , an] and B = [b1, . . . , bn] are said to have
zero PAF (resp. NPAF) if

PA(s) + PB(s) = 0, i = 1, . . . , n− 1

resp. NA(s) + NB(s) = 0, i = 1, . . . , n− 1.

Weighing matrices come from sequences with zero PAF.

Fact:
If we can construct two sequences A and B with zero PAF, then we
can construct W (2 · n, k) from two circulants.
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Power Spectral Density, PSD
PSD Theorem

[Fletcher, Gysin, Seberry, Australas. J. Combin., 23, 2001]

Two sequences [a1, . . . , an], [b1, . . . , bn] can be used to make up
circulant matrices A and B that will give W (2n, k) weighing matrices
if and only if

PSD([a1, . . . , an], i) + PSD([b1, . . . , bn], i) = k, ∀ i = 0, . . . ,
n− 1

2

where PSD([a1, . . . , an], k) denotes the k-th element of the power
spectral density sequence, i.e. the square magnitude of the k-th
element of the discrete Fourier transform (DFT) sequence associated
to [a1, . . . , an].
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The DFT sequence associated to [a1, . . . , an] is defined as

DFT[a1,...,an] = [ µ0, . . . , µn−1 ] , with µk =
n−1∑

i=0

ai+1 ωik, k = 0, . . . , n−1

where ω = e
2πi
n = cos

(
2π
n

)
+ i sin

(
2π
n

)
is a primitive n-th root of unity.

The proof is based on the Wiener-Khinchin Theorem

• The PSD of a sequence is equal to the DFT of its PAF sequence

| µk |2=
n−1∑
j=0

PAFA(j)ωjk

• The PAF of a sequence is equal to the inverse DFT of its PSD sequence

PAFA(j) =
1

n

n−1∑
j=0

| µk |2 ω−jk
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The Parseval Theorem provides a horizontal relationship between
the elements of a sequence [a1, . . . , an] and its DFT sequence:

n∑

i=1

| ai |2= 1
n

n∑

i=1

PSD([a1, . . . , an], i)

The PSD theorem provides a vertical relationship between the
elements of two sequences [a1, . . . , an] and [b1, . . . , bn].

The PSD criterion for W (2n, k) states that:

if for a certain sequence [a1, . . . , an] there exists i ∈ {1, . . . , n−1
2 } with

the property that PSD([a1, . . . , an], i) > k, then this sequence cannot
be used to construct W (2n, k).

Important Consequence: we can now decouple the PAF
equations, roughly corresponding to cutting down the complexity by
half.
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Algorithm: String Sorting
Begin with

PSD([b1, . . . , bn], i) = k − PSD([a1, . . . , an], i), ∀ i = 0, . . . ,
n− 1

2
and take integer parts

[PSD([b1, . . . , bn], i)] =





k − 1− [PSD([a1, . . . , an], i)], is not an integer

k − [PSD([a1, . . . , an], i)], is an integer

A pair of vectors [a1, . . . , an] and [b1, . . . , bn] can be encoded as the
concatenation of the integer parts of the first n−1

2 components of their
PSD vectors:

[b1, . . . , bn] −→ [PSD([b1, . . . , bn], 1)] . . .

[a1, . . . , an] −→ k − 1− [PSD([a1, . . . , an], 1)] . . .
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Using the above encoding, the condition that a pair of sequences
[a1, . . . , an] and [b1, . . . , bn] can be used as the first rows of circulants
to construct W (2n, k) weighing matrices, can be simply phrased by
saying that their corresponding string encodings are equal.

Therefore we see that the search for weighing matrices is essentially a
string sorting problem.

A solution for W (2 · 29, 53) can now be found within a day, with serial
programs.

However: A solution for W (2 · 33, 61) was still not found.

Is it possible that [PSD([a1, . . . ,an], i)] can be an integer?
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Rounding Error Treatment
LEMMA Let n be an odd integer such that n ≡ 0 (mod 3) and let
m = n

3 . Let ω = e
2πi
n = cos

(
2π
n

)
+ i sin

(
2π
n

)
the principal n-th root of

unity. Let [a1, . . . , an] be a sequence with elements from {−1, 0,+1}.
Then we have that DFT ([a1, . . . , an],m) can be evaluated explicitly in
closed form and PSD([a1, . . . , an],m) is a non-negative integer. The
explicit evaluations are given by

DFT ([a1, . . . , an],m) =
(

A1 − 1
2
A2 − 1

2
A3

)
+

(√
3

2
A2 −

√
3

2
A3

)
i

PSD([a1, . . . , an],m) = A2
1 + A2

2 + A2
3 −A1A2 −A1A3 −A2A3

where

A1 =
m−1∑

i=0

a3i+1, A2 =
m−1∑

i=0

a3i+2, A3 =
m−1∑

i=0

a3i+3.
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Sketch of proof: Acknowledgement: Doron Zeilberger

DFT ([a1, . . . , an],m) is a linear combination of ω0, ωm, ω2m

DFT ([a1, . . . , an],m) =
n−1∑

i=0

ai+1 ωim =

=

(
m−1∑

i=0

a3i+1

)
ω0 +

(
m−1∑

i=0

a3i+2

)
ωm +

(
m−1∑

i=0

a3i+3

)
ω2m

A1ω
0 + A2ω

m + A3ω
2m.

ωm = e
2πi
3 and ω2m = e

4πi
3 are the roots of the cyclotomic polynomial

Φ3(x) = x2 + x + 1 and can be evaluated explicitly as:

ωm = −1
2

+
√

3
2

i, ω2m = −1
2
−
√

3
2

i.

Solutions for W (2 · 33, 61) were found. http://www.cargo.wlu.ca/weighing/
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