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Combinatorial Design Theory

Is it possible to arrange elements of a finite set into subsets so that
certain properties are satisfied?

Existence and non-existence results. Infinite classes.

Tools & concepts from: linear algerbra, algebra, group theory, number

theory, combinatorics, symbolic computation, numerical analysis.

Applications to: cryptography, optical communications, wireless

communications, coding theory.
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Weighing Matrices

A weighing matrix W = W (n, k) of weight k, is a square n x n
matrix with entries —1, 0, 41 having k non-zero entries per row and

column and inner product of distinct rows zero.

W -Wt=kI,

Fact:
If there is a W (2n, k), n odd, then £ < 2n — 1 and k is the sum of two

squares.

Theorem:

If there exist two circulant matrices A, B of order n each, satisfying
A-A'+ B-B' = kI,, then there exists a W (2n, k).

N /
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A B
W(2n, k) =
—Bt Al

W (2n,2n — 1) constructed from two circulants: infinite class

W (2n,2n — 3) constructed from two circulants: do not exist
Ten Open Problems: [C. Koukouvinos, J. Seberry, JSPI (81), 1999]
Do there exist

W(2-23,41), W(2-25,45), W(2-27,49), W(2-29,53), W(2-33,61),
W(2-35,65), W(2-39,73), W(2-43,81), W(2-45,85), W(2-47,89)
constructed from two circulants?

Common feature: W (2n,2n — 5), for n = 23,...,47.
Odd large weights.
R. Craigen, The structure of weighing matrices having large weights.

Qes. Codes Cryptogr. (5) 1995 /
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Plan of attack:
Establish potential patterns for the locations of the 5 zeros in

solutions.

From 32" ~ 231" ops, down to 22" ops.

Idea:
Analyze the solutions sets for W (2n, 2n —5) for all odd n up to n = 15.
(bash /Maple meta-program, C code generation, supercomputing)

First observation: (4 zeros)

a ... aQp—2 0aAnpn—1 Qan bl bg b3 “. bn
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/Second observation: (the remaining fifth zero) \

aip x...x%x

J/
Ve -~

=3 terms =3 terms n—2terms

0 x...xap,—2 0 0 0 O @3*...*%

~"

1 *...%xQAp—o 0 0 0 O bgx...x 0 *...x0b,
~ ~ - N—— ~ ~~ -
n—2terms =3 terms =3 terms

CRYSTALIZATION When we fix the 4 zeros as indicated above,
then the fifth zero can only appear in exactly two possible places, in a
W (2n,2n — 5) solution.

A proof will probably use Hall polynomials, PAF equations
anlication: Infinite Class of W (2n,2n — 5) /
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/Results:

W(2%*x23,41) solution
-1 -1-1-1-11 1-11-10 1 1 1-1-1 1-1-11-10 0
o 0-1-1 11 -1-11 11-1-1-1-1-1-1 1-11-11-1

W(2*x25,45) solution
11 1 11 -1-111-11 01-1 1 -1-1-1-111 1 100
oo-1-11-1-11111-11 1-1 1-1 1-111-1-111

W(2*x27,49) solution
11 1 1 11-1-1-11-1-1 0-1-11 1-1-1 1-1 1-11-10

\VV (2-29,53) is still out of reach, as it still requires 2°° ops.

co0-1-1-11 1-111-1-1-1-111-1-1-1-1 1-1-11-11+-1

~

0

/
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Periodic & non-periodic
autocorrelation function

The 2nd elementary symmetric function in n variables a4, ..., a,
092 = 1049 —|—---an_1an = E aiaj
1<i<y<n

plays a pivotal role in building W (2n, k).
PAF and NPAF concepts

n—1

—1
agismadeupOon—i:n(n ):(n)

. 2
1=1
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(pairwise different) quadratic monomials:

.
a1a2 aza3 asaq
ajas a204

asan

{

A10n—1 a20n ®
ai1Qn, ® ®
. n—1terms n—2terms n-—3 terms

N

N——
n—i terms

Ap—10n

N——
1 term
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( .
a1a9 asaz asa4 . Qap—10an
aj1as aos20a4 o
9 a3ay, o
a1ap—-1 Aa2apn o o
. a1ag ° ° °
Lemma:
NA(l)—I—NA(Q)—I—...—I—NA(n— 1) = 09
Fact:
Pa(s) = Na(s)+ Na(n—s), s
Lemma:
\ PA(l)—I—PA(Q)—I—...—I—PA(TL—l):202
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/Fact :

The converse is not always true.

NPAF =0=— PAF =0

Definition:

Two sequences A = [a1,...,a,] and B = [by,...,b,] are said to have
zero PAF (resp. NPAF) if

Pus(s)+ Pp(s) =0, i=1,....,n—1
resp. Na(s)+ Np(s)=0, i=1,...,n—1.

Weighing matrices come from sequences with zero PAF.

Fact:

If we can construct two sequences A and B with zero PAF, then we

\can construct W (2 - n, k) from two circulants.

~

/
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Power Spectral Density, PSD

PSD Theorem
[Fletcher, Gysin, Seberry, Australas. J. Combin., 23, 2001]

Two sequences |aq,...,ay], [b1,...,b,] can be used to make up
circulant matrices A and B that will give W (2n, k) weighing matrices
if and only if
n—1

2

where PSD(|aq,...,ay], k) denotes the k-th element of the power

spectral density sequence, i.e. the square magnitude of the k-th

PSD([ar,. .. an),i) + PSD([b1,...,bul,d) =k, Yi=0,...,

element of the discrete Fourier transform (DFT) sequence associated

to [&1, e ,CLn].

N /
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/The DFT sequence associated to |aq,...,a,] is defined as \

n—1

DFTja,,..an) = [f0s s ftn—1], With pp = > a1 0™, k=0,...,n—1
1=0

271

where w = e n

= COS (2”) + ¢ sin (2”) is a primitive n-th root of unity.
The proof is based on the Wiener-Khinchin Theorem
The PSD of a sequence is equal to the DFT of its PAF sequence
n—1
|k [P= ) PAFa(j)e’"
§=0

The PAF of a sequence is equal to the inverse DFT of its PSD sequence

PAFA(j Z | |* w

N /
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/The Parseval Theorem provides a horizontal relationship between\

the elements of a sequence |aq,...,a,] and its DFT sequence:
n 1 mn
2 .
i |°= — PSD(lay,...,a,],1
MIPTE ST RE

The PSD theorem provides a vertical relationship between the

elements of two sequences |aq,...,a,] and |[by, ..., b,].
The PSD criterion for W (2n, k) states that:

if for a certain sequence |a1,...,a,] there exists ¢ € {1,..., ”T_l} with
the property that PSD([a1,...,ay],?7) > k, then this sequence cannot
be used to construct W (2n, k).

Important Consequence: we can now decouple the PAF

equations, roughly corresponding to cutting down the complexity by

\half. /
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4 Algorithm: String Sorting D

Begin with

PSD([by,...,bn),i) =k — PSD([ax,...,an],3), ¥Vi=0,...,

and take integer parts

k—1—-[PSD(lay,...,a,],1)], isnot an intege

(PSD([by,...,b,],7)] = _
k—|PSD(lay,...,ay],1)], is an integer

A pair of vectors |aq,...,a,] and [by,...,b,] can be encoded as the
concatenation of the integer parts of the first ”T_l components of their
PSD vectors:

[b1,...,bp] — [PSD([b1,...,bs],1)]...
ai,...,an] — k—1—[PSD([ai,...,axn],1)]...

N /
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Using the above encoding, the condition that a pair of sequences
la1,...,a,] and [by,...,b,] can be used as the first rows of circulants
to construct W (2n, k) weighing matrices, can be simply phrased by

saying that their corresponding string encodings are equal.

Therefore we see that the search for weighing matrices is essentially a

string sorting problem.

A solution for W (2 -29,53) can now be found within a day, with serial

programs.
However: A solution for W (2 - 33,61) was still not found.

Is it possible that [PSD([|a;,...,a,],i)] can be an integer?

N /
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4 Rounding Error Treatment
LEMMA Let n be an odd integer such that n = 0 (mod 3) and let

3

Then we have that DFT(|aq,...,a,],m) can be evaluated explicitly
closed form and PSD(|a1,.-..,a,], m) is a non-negative integer. The

explicit evaluations are given by
1 1
DFT([CLl, .o .,an],m) — (Al — 5142 — 5143) -+ (fAQ — ng)
PSD(lai, ... an],m) = A% T A% + A% — A1Ay — A1 A3 — AxAs

where

m—1 m—1 m—1
Al = E a3;+1, Ay = E a3i;+2, A3: E a3;+3-

m=2. Let w=en = cos (2”) + ¢ sin ( ) the principal n-th root of
unity. Let |a1,...,a,] be a sequence with elements from {—1,0,+1}.

~

n

/
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/Sketch of proof: Acknowledgement: Doron Zeilberger \

DFT([a1,...,a,],m) is a linear combination of w’, w™, w*™

n—1
DFT(la1,...,ay],m) = Zaiﬂ W™ =
i=0

m—1 m—1 m—1
= <Z Cb3z‘+1> w? + (Z a3i+2> w™ + (Z a37j—|—3> w?m
i=0

1=0 1=0
Alwo + Agwm + Angm.

271 47

m — e and w?” =e 3 are the roots of the cyclotomic polynomial

W
®3(x) = 22 + x + 1 and can be evaluated explicitly as:

m 1 \/g 2m 1 \/g

wEEmog Tt wh =gt

\Solutions for W (2 -33,61) were found. http://www.cargo.wlu.ca/weighing/ /
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Lemma 11. Let k =a*> +b*, k<2n— 1. Then there exist W(2n,k) constructed from
two circulants except for

E
£
al
g
E
E
i
£
:
-
g
8

1. n=23, k € {41,45};
2. n=25, k € {41,45};
3. n=27, k €{9,18,29,36,37,41,45,49,50};
4. n=29, k €{9,18,29,36,37,41,45,49,50,53};
5. n=31, k €{9,18,29,45,49,53,58};
6. n =233, k €{29,37,41,49,53,58,61,65}; g
7. n=35, k €{9,18,29,37,41,45,49,53,58,61,65,68};
8. n =39, k €{29,41,49,53,58,61,68,71,72}.
In addtion there exist W(2n,k) not constructed from two circulants for
1. n=23, k€ {45}
2. n=127,29,31, ke {9,18};
3. n=131,3335,39, k€ {29}
|~
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