
Weyl algebra
Gröbner basis

Faugére’s F4 algorithm

Parallel computations of Gröbner bases
in the Weyl algebra

Something to run on a machine with 128 cores

Anton Leykin

Institute for Mathematics and its Applications, Minneapolis

MSRI, Berkeley, 2007

Anton Leykin Parallel computations of Gröbner bases in the Weyl algebra



Weyl algebra
Gröbner basis

Faugére’s F4 algorithm
What is Weyl algebra?

Definition (n-th Weyl algebra over field K of characteristic 0)

D = An(K) = K〈x, ∂〉 = K〈x1, ∂1, . . . , xn, ∂n〉,

where [∂i, xi] = ∂ixi − xi∂i = 1 and all other pairs commute.

Multiplication in Weyl algebra: Leibnitz rule

An = K〈x1, . . . , xn, ∂1, . . . , ∂n〉 then for P,Q ∈ An

PQ =
∑

α∈Zn
>0

1
α!

Diff(P, ∂α) ∗ Diff(Q, xα),

where Diff is a formal partial derivative (as if P,Q are polynomials)
and ∗ is the polynomial multiplication.

Weyl algebra in computer algebra systems

kan/sm1, risa/asir (Takayama, Noro); Macaulay 2 (Grayson, Stillman),
D-modules for M2 (A.L., Tsai); Singular/Plural (Levandovskyy);
CoCoA (group in Genova, Italy).
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Weyl algebra
Gröbner basis

Faugére’s F4 algorithm

Buchberger algorithm
Parallel Buchberger

Let R be a Gröbner-friendly algebra (think: R = K[x1, . . . , xn]).

Definition
Given a fixed admissible monomial ordering, a polynomial f ∈ R has

initial monomial lm(f);
initial coefficient lc(f);
initial term lt(f) = lc(f) lm(f).

Algorithm REDUCE(f,B)

In: f ∈ R, B ⊂ R
Out: a reduction of f w.r.t B

f ′ := f
WHILE ∃g ∈ B such that lm(f ′) is divisible by lm(g); DO

f ′ := f ′ − lt(f ′)
lt(g)

· g

RETURN f ′
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Let L(f, g) = lcm(lm(f), lm(g)).

Definition (s-polynomial of f and g)

sPoly(f, g) = lc(g)
L(f, g)
lm(f)

f − lc(f)
L(f, g)
lm(g)

g.

Definition
A set G ⊂ R is a Gröbner basis of a left ideal I ⊂ R if I = R · G and

gr(R) · {LM(f)|f ∈ I} = gr(R) · {LM(g)|g ∈ G},

where gr(R) is the graded ring associated to R.

Buchberger criterion

A set G ⊂ R is a Gröbner basis if REDUCE(sPoly(f, g), G) = 0 for
all f, g ∈ G.
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Parallel Buchberger

Buchberger algorithm

Given a generating set B of an ideal of R, algorithm
BUCHBERGER(B) computes a Gröbner basis G:

G := B
S := {(f1, f2)|f1, f2 ∈ B} // queue of s-pairs
WHILE S 6= ∅; DO

Pick (f1, f2) ∈ S, S := S \ {(f1, f2)}
g := REDUCE(sPoly(f1, f2), G)
IF g 6= 0

THEN S := S ∪ {(f, g)|f ∈ G}
G := G ∪ {g}

END WHILE
RETURN G

In the Weyl algebra...

the basic version works;
improved (Gebauer, Möller) version needs modifications.
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Parallel Buchberger

Prior work on parallel computation of Gröbner bases

Buchberger (1987)
Bündgen - Göbel - Küchlin (1994)
Chakrabarti - Yelick (1994)
Faugére (1994)
Siegl (1994)
Sawada - Terasaki - Aiba (1994)
Attardi - Traverso (1996)
Amrhein - Gloor - Kuchlin (1996)
Sato - Suzuki (1999,2000)
Gerdt - Yanovich (2005)
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Weyl algebra
Gröbner basis

Faugére’s F4 algorithm

Buchberger algorithm
Parallel Buchberger

maintains an intermediate basis
G and the queue of s-pairs S;
distributes orders to Slaves;
collects results and updates G
and S.

stores a local basis G;
receives orders from
Master and send back
the results;
receives updates for G.
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Weyl algebra
Gröbner basis

Faugére’s F4 algorithm

Buchberger algorithm
Parallel Buchberger

Key point: The order of s-pairs the same as in the serial algorithm.
The strategies used for s-pair selection are preserved.

Implementation: C++ with MPI

implemented from scratch in C++;
uses MPI for communications;
tested on clusters in the Minnesota Supercomputing Institute and
NCSA.

Simulation of parallel computation

Assumptions:
operations performed by Master are instantaneous;
time for sending a package from one node to another depends
linearly on its size.
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Weyl algebra
Gröbner basis

Faugére’s F4 algorithm

... for Weyl algebra
Loss of sparsity

Faugére’s F4:
can be adapted for Gröbner-friendly algebras;
implementations: Noro (risa/asir) for Weyl algebra, Pearce -
Monagan (Maple) Ore algebras;
loss of sparsity: multiplication of an operator by monomial
increases the number of terms.

Example

Let D = A2 = K〈x1, x2, ∂1, ∂2〉, f1 = x2
1∂

3
2 , f2 = x3

2∂
2
1 . F4 starts

computing a Gröbner basis of ideal D · {f1, f2} with the matrix

[x2
1∂

3
2 x3

2∂
2
1

f1 1 0
f2 0 1

]
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The second step builds the following matrix:

2
6664

x2
1x

3
2∂

2
1∂3

2 x2
1x

2
2∂

2
1∂2

2 x1x
3
2∂1∂

3
2 x2

1x2∂
2
1∂2 x3

2∂
3
2 x3

2∂
2
1 x2

1∂
3
2 x2

1∂
2
1

f1 0 0 0 0 0 0 1 0

f2 0 0 0 0 0 1 0 0

f1f2 1 9 0 18 0 0 0 1

f2f1 1 0 4 0 1 0 0 0

3
7775

Help!

Structured Gaussian elimination? ... (over a finite field) ...
... in parallel?

Anton Leykin Parallel computations of Gröbner bases in the Weyl algebra



Weyl algebra
Gröbner basis

Faugére’s F4 algorithm

... for Weyl algebra
Loss of sparsity

The second step builds the following matrix:

2
6664

x2
1x

3
2∂

2
1∂3

2 x2
1x

2
2∂

2
1∂2

2 x1x
3
2∂1∂

3
2 x2

1x2∂
2
1∂2 x3

2∂
3
2 x3

2∂
2
1 x2

1∂
3
2 x2

1∂
2
1

f1 0 0 0 0 0 0 1 0

f2 0 0 0 0 0 1 0 0

f1f2 1 9 0 18 0 0 0 1

f2f1 1 0 4 0 1 0 0 0

3
7775

Help!

Structured Gaussian elimination? ... (over a finite field) ...
... in parallel?

Anton Leykin Parallel computations of Gröbner bases in the Weyl algebra



Weyl algebra
Gröbner basis

Faugére’s F4 algorithm

... for Weyl algebra
Loss of sparsity

The second step builds the following matrix:

2
6664

x2
1x

3
2∂

2
1∂3

2 x2
1x

2
2∂

2
1∂2

2 x1x
3
2∂1∂

3
2 x2

1x2∂
2
1∂2 x3

2∂
3
2 x3

2∂
2
1 x2

1∂
3
2 x2

1∂
2
1

f1 0 0 0 0 0 0 1 0

f2 0 0 0 0 0 1 0 0

f1f2 1 9 0 18 0 0 0 1

f2f1 1 0 4 0 1 0 0 0

3
7775

Help!

Structured Gaussian elimination? ... (over a finite field) ...
... in parallel?

Anton Leykin Parallel computations of Gröbner bases in the Weyl algebra



Weyl algebra
Gröbner basis

Faugére’s F4 algorithm

... for Weyl algebra
Loss of sparsity

Conclusion

Parallel versions of Buchberger’s algorithm can produce limited
speedups;
Our coarse-grain approach exhibits better speedups in the
noncommutative algebra than in the (commutative) polynomial
rings on “interesting” problems of similar size.
It does make sense to use 128 nodes on this problem!

Future
From theory to practice: a practically efficient parallel
implementation is needed;
Faugére’s F4 algorithm results in the loss of sparsity in the
intermediate computation...
... however, it still feasible and its parallel version could be
constructed;
Agreeing on the test/benchmark set.
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