
1LCPC 2006 Kathy Yelick

Programming Models for Parallel
Computing

Katherine Yelick

U.C. Berkeley and Lawrence Berkeley National Lab

http://titanium.cs.berkeley.edu
http://upc.lbl.gov

Kathy Yelick, 2LCPC 2006

Parallel Computing Past
• Not long ago, the viability of parallel computing was

questioned:
• Several panels titled “Is parallel processing dead?”
• “On several recent occasions, I have been asked whether

parallel computing will soon be relegated to the trash heap
reserved for promising technologies that never quite make it.”

• Ken Kennedy, CRPC Directory, 1994

• But then again, there’s a history of tunnel vision
• “I think there is a world market for maybe five computers.”

• Thomas Watson, chairman of IBM, 1943.
• “There is no reason for any individual to have a computer in their

home”
• Ken Olson, president and founder of Digital Equipment Corporation,

1977.
• “640K [of memory] ought to be enough for anybody.”

• Bill Gates, chairman of Microsoft,1981.Slide source: Warfield et al.

Kathy Yelick, 3LCPC 2006

Moore’s Law is Alive and Well

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra

Kathy Yelick, 4LCPC 2006

But Clock Scaling Bonanza Has Ended
• Processor designers are forced to go

“multicore” due to
• Heat density: faster clock means hotter chips

• more cores with lower clock rates burn less power
• Declining benefits of “hidden” Instruction Level Parallelism

(ILP)
• Last generation of single core chips probably over-engineered
• Lots of logic/power to find ILP parallelism, but it wasn’t in the apps

• Yield problems
• Parallelism can also be used for redundancy
• IBM Cell processor has 8 small cores; a blade system with all 8

sells for $20K, whereas a PS3 is about $600 and only uses 7

Kathy Yelick, 5LCPC 2006

Power Density Limits Serial Performance
Clock Scaling Extrapolation:

Kathy Yelick, 6LCPC 2006

Revolution is Happening Now
• Chip density is

continuing
increase ~2x every
2 years
• Clock speed is not
• Number of

processor cores
may double
instead

• There is little or no
hidden parallelism
(ILP) to be found

• Parallelism must
be exposed to and
managed by
software

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

Kathy Yelick, 7LCPC 2006

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Revolution in Hardware: Multicore

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

Power density and ILP limits
software-visible parallelism

3X

Kathy Yelick, 8LCPC 2006

Why Parallelism (2007)?
• These arguments are no longer theoretical
• All major processor vendors are producing multicore chips

• Every machine will soon be a parallel machine
• All programmers will be parallel programmers???

• New software model
• Want a new feature? Hide the “cost” by speeding up the code first
• All programmers will be performance programmers???

• Some may eventually be hidden in libraries, compilers, and high
level languages
• But a lot of work is needed to get there

• Big open questions:
• What will be the killer apps for multicore machines?
• How should the chips be designed: multicore, manycore, heterogenous?
• How will they be programmed?

Kathy Yelick, 9LCPC 2006

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1993 1996 1999 2002 2005 2008 2011 2014

SUM
#1
#500

Petaflop with ~1M Cores By 2008
1Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

1 PFlop system in 2008

Slide source Horst Simon, LBNL

Data from top500.org

6-8 years

Common
by 2015?

Kathy Yelick, 10LCPC 2006

Memory Hierarchy
• With explicit parallelism, performance becomes a software problem
• Parallelism is not the only way to get performance; locality is at least

as important
• And this problem is growing, as off-chip latencies are relatively flat

(about 7% improvement per year) compared to processor
performance

on-chip
cacheregisters

datapath

control

processor

Second
level

cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

TBGBMBKBBSize

10sec10ms100ns10ns1nsSpeed

Kathy Yelick, 11LCPC 2006

Predictions
• Parallelism will explode

• Number of cores will double every 12-24 months
• Petaflop (million processor) machines will be common

in HPC by 2015 (all top 500 machines will have this)
• Performance will become a software problem

• Parallelism and locality are key will be concerns for
many programmers – not just an HPC problem

• A new programming model will emerge for
multicore programming
• Can one programming model (not necessarily one

language) cover games, laptops, and top500 space?

12LCPC 2006 Kathy Yelick

PGAS Languages:
What, Why, and How

Kathy Yelick, 13LCPC 2006

Parallel Programming Models
• Parallel software is still an unsolved problem !
• Most parallel programs are written using either:

• Message passing with a SPMD model
• for scientific applications; scales easily

• Shared memory with threads in OpenMP, Threads, or Java
• non-scientific applications; easier to program

• Partitioned Global Address Space (PGAS)
Languages

• global address space like threads (programmability)
• SPMD parallelism like MPI (performance)
• local/global distinction, i.e., layout matters (performance)

Kathy Yelick, 14LCPC 2006

Partitioned Global Address Space Languages
• Explicitly-parallel programming model with SPMD

parallelism
• Fixed at program start-up, typically 1 thread per processor

• Global address space model of memory
• Allows programmer to directly represent distributed data structures

• Address space is logically partitioned
• Local vs. remote memory (two-level hierarchy)

• Programmer control over performance critical decisions
• Data layout and communication

• Performance transparency and tunability are goals
• Initial implementation can use fine-grained shared memory

• Base languages UPC (C), CAF (Fortran), Titanium (Java)
• New HPCS languages have similar data model, but

dynamic multithreading

Kathy Yelick, 15LCPC 2006

Partitioned Global Address Space
• Global address space: any thread/process may directly

read/write data allocated by another
• Partitioned: data is designated as local or global

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn

By default:
• Object heaps

are shared
• Program

stacks are
private

• 3 Current languages: UPC, CAF, and Titanium
• All three use an SPMD execution model
• Emphasis in this talk on UPC and Titanium (based on Java)

• 3 Emerging languages: X10, Fortress, and Chapel

Kathy Yelick, 16LCPC 2006

PGAS Language Overview

• Many common concepts, although specifics differ
• Consistent with base language, e.g., Titanium is strongly typed

• Both private and shared data
• int x[10]; and shared int y[10];

• Support for distributed data structures
• Distributed arrays; local and global pointers/references

• One-sided shared-memory communication
• Simple assignment statements: x[i] = y[i]; or t = *p;
• Bulk operations: memcpy in UPC, array ops in Titanium and CAF

• Synchronization
• Global barriers, locks, memory fences

• Collective Communication, IO libraries, etc.

Kathy Yelick, 17LCPC 2006

Private vs. Shared Variables in UPC
• C variables and objects are allocated in the private memory space
• Shared variables are allocated only once, in thread 0’s space

shared int ours;
int mine;

• Shared arrays are spread across the threads
shared int x[2*THREADS] /* cyclic, 1 element each, wrapped */
shared int [2] y [2*THREADS] /* blocked, with block size 2 */

• Heap objects may be in either private or shared space

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

x[0,n+1]

y[0,1]

x[1,n+2]

y[2,3]

x[n,2n]

y[2n-1,2n]

Kathy Yelick, 18LCPC 2006

PGAS Language for Multicore
• PGAS languages are a good fit to shared

memory machines
• Global address space implemented as reads/writes
• Current UPC and Titanium implementation uses threads
• Working on System V shared memory for UPC

• “Competition” on shared memory is OpenMP
• PGAS has locality information that may be important when

we get to >100 cores per chip
• Also may be exploited for processor with explicit local

store rather than cache, e.g., Cell processor
• SPMD model in current PGAS languages is both an

advantage (for performance) and constraining

Kathy Yelick, 19LCPC 2006

PGAS Languages on Clusters:
One-Sided vs Two-Sided Communication

• A one-sided put/get message can be handled directly by a network
interface with RDMA support
• Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a receive to
identify memory address to put data
• Offloaded to Network Interface in networks like Quadrics
• Need to download match tables to interface (from host)

address

message id

data payload

data payload
one-sided put message

two-sided message

network
interface

memory

host
CPU

Joint work with Dan Bonachea

Kathy Yelick, 20LCPC 2006

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

B
an

dw
id

th
 (M

B
/s

)

GASNet put (nonblock)"
MPI Flood

Relative BW (GASNet/MPI)

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

10 1000 100000 10000000

Size (bytes)

• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
• Half power point (N ½) differs by one order of magnitude
• This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea

(u
p

is
 g

oo
d) NERSC Jacquard

machine with
Opteron
processors

Kathy Yelick, 21LCPC 2006

GASNet: Portability and High-Performance
(d

ow
n

is
 g

oo
d)

GASNet better for latency across machines

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
 L

at
en

cy
 (u

se
c)

MPI ping-pong
GASNet put+sync

Joint work with UPC Group; GASNet design by Dan Bonachea

Kathy Yelick, 22LCPC 2006

(u
p

is
 g

oo
d)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858 228
795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
)

MPI
GASNet

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea

Kathy Yelick, 23LCPC 2006

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance
Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI
GASNet

Joint work with UPC Group; GASNet design by Dan Bonachea

Kathy Yelick, 24LCPC 2006

Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:
• Chunk:

• Wait for 2nd dim FFTs to finish
• Minimize # messages

• Slab:
• Wait for chunk of rows destined

for 1 proc to finish
• Overlap with computation

• Pencil:
• Send each row as it completes
• Maximize overlap and
• Match natural layout slab = all rows in a single plane with

same destination

Kathy Yelick, 25LCPC 2006

NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI
Best MPI
Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
F

lo
ps

 p
er

 T
hr

ea
d

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

.5 Tflops

Myrinet Infiniband Elan3 Elan3 Elan4 Elan4
#procs 64 256 256 512 256 512

M
Fl

op
s

pe
r T

hr
ea

d

Chunk (NAS FT with FFTW)
Best MPI (always slabs)
Best UPC (always pencils)

26LCPC 2006 Kathy Yelick

Making PGAS Real:
Applications and Portability

Kathy Yelick, 27LCPC 2006

AMR in Titanium
C++/Fortran/MPI AMR

• Chombo package from LBNL
• Bulk-synchronous comm:

• Pack boundary data between procs

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

• No explicit pack/unpack code
• Automated in runtime system

Code Size in Lines

4200*
6500

35000
C++/F/MPI

1500Elliptic PDE solver
1200AMR operations
2000AMR data Structures

Titanium

10X reduction in
lines of code!

* Somewhat more functionality in PDE part of Chombo code

AMR Work by Tong Wen and Philip Colella

Kathy Yelick, 28LCPC 2006

Performance of Titanium AMR
Speedup

0
10
20
30
40
50
60
70
80

16 28 36 56 112

#procs

sp
ee

du
p

Ti Chombo

• Serial: Titanium is within a few % of C++/F; sometimes faster!
• Parallel: Titanium scaling is comparable with generic optimizations

- optimizations (SMP-aware) that are not in MPI code
- additional optimizations (namely overlap) not yet implemented

Comparable
parallel
performance

Joint work with Tong Wen, Jimmy Su, Phil Colella

Kathy Yelick, 29LCPC 2006

Particle/Mesh Method: Heart Simulation
• Elastic structures in an incompressible fluid.

• Blood flow, clotting, inner ear, embryo growth, …
• Complicated parallelization

• Particle/Mesh method, but “Particles” connected
into materials (1D or 2D structures)

• Communication patterns irregular between particles
(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines

8000
Fortran

4000
Titanium

Note: Fortran code is not parallel

Kathy Yelick, 30LCPC 2006

Immersed Boundary Method Performance

Hand-Optimized
(planes, 2004)

0
10

20
30

40
50

1 2 4 8 16 32 64 128
procs

tim
e

(s
ec

s)

256 3̂ on Power3/Colony
512 3̂ on Power3/Colony
512 2̂x256 on Pent4/Myrinet

Automatically Optimized
(sphere, 2006)

0

0.5

1

1.5

2

1 2 4 8 16 32 64 128

procs

tim
e

(s
ec

s)

128^3 on Power4/Federation
256^3 on Power4/Federation

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

Kathy Yelick, 31LCPC 2006

Kathy Yelick, 32LCPC 2006

Dense and Sparse Matrix Factorization
Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

Completed part of U

C
om

pleted part of L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix
to be updated

Panel being factored

Joint work with Parry Husbands and Esmond Ng

Kathy Yelick, 33LCPC 2006

Matrix Factorization in UPC
• UPC factorization uses a highly multithreaded style

• Used to mask latency and to mask dependence delays
• Three levels of threads:

• UPC threads (data layout, each runs an event scheduling loop)
• Multithreaded BLAS (boost efficiency)
• User level (non-preemptive) threads with explicit yield

• No dynamic load balancing, but lots of remote invocation
• Layout is fixed (blocked/cyclic) and tuned for block size

• Same framework being used for sparse Cholesky
• Hard problems

• Block size tuning (tedious) for both locality and granularity
• Task prioritization (ensure critical path performance)
• Resource management can deadlock memory allocator if not careful

Joint work with Parry Husbands

Kathy Yelick, 34LCPC 2006

UPC HP Linpack Performance
X1 UPC vs. MPI/HPL

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
Fl

op
/s

MPI/HPL

UPC

Opteron
cluster
UPC vs.
MPI/HPL

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix UPC.
Vs.

MPI/HPL

0

20

40

60

80

100

120

140

160

Alt/32

G
Fl

op
/s

MPI/HPL

UPC

•Comparable to MPI HPL (numbers from HPCC database)
•Faster than ScaLAPACK due to less synchronization
•Large scaling of UPC code on Itanium/Quadrics (Thunder)

• 2.2 TFlops on 512p and 4.4 TFlops on 1024p
Joint work with Parry Husbands

UPC vs.
ScaLAPACK

0

20

40

60

80

2x4 pr oc gr i d 4x4 pr oc gr i d

G
Fl

op
s

ScaLAPACK

UPC

Kathy Yelick, 35LCPC 2006

PGAS Languages and Symbolic Computing
• Most of these applications are numeric
• Experience in parallel symbolic computing

• Grobner basis completion procedure [CAD 92, PPoPP 93, RTA 93]
• Compiling Verilog [IVC 95]
• The Perfect Phylogeny Problem [Supercomputing 95]
• Connected components
• Mesh generation

• What do these applications require?
• Complex, irregular shared data structures

• Not just distributed arrays
• Ability to communicate/share data asynchronously

• Not bulk-synchronous; not two-sided messaging
• Fast low-overhead communication/sharing

• Shared memory is ideal, remote procedure invocation useful

Kathy Yelick, 36LCPC 2006

Portability of Titanium and UPC
• Titanium and the Berkeley UPC translator use a similar model

• Source-to-source translator (generate ISO C)
• Runtime layer implements global pointers, etc
• Common communication layer (GASNet)

• Both run on most PCs, SMPs, clusters & supercomputers
• Operating Systems:

• Linux, FreeBSD, Tru64, AIX, IRIX, HPUX, Solaris, Cygwin, MacOSX, Unicos, SuperUX
• Supported CPUs:

• x86, Itanium, Alpha, Sparc, PowerPC, PA-RISC, Opteron
• GASNet communication:

• Myrinet, Quadrics, Infiniband, IBM LAPI, Cray X1, SGI Altix, SHMEM, MPI and UDP
• Specific platforms:

• HP AlphaServer, Cray X1, IBM SP, NEC SX-6, Cluster X (Big Mac), SGI Altix 3000
• Underway: Cray XT3, BG/L (both run over MPI)

• Can be mixed with MPI, C/C++, Fortran
• Several other compilers for UPC: HP, Cray, MTU, Intrepid, IBM

Also used by gcc/upc

Joint work with Titanium and UPC groups

Kathy Yelick, 37LCPC 2006

Conclusions
• Parallel computing is the future

• Time to think about parallelization strategies; think in long
term towards machine trends

• Best time ever for a new parallel language
• PGAS Languages

• Good fit for shared and distributed memory
• Control over locality and (for better or worse) SPMD
• Support needs of symbolic and numeric communities
• Offer incremental parallelism

• Available for download
• Berkeley UPC compiler: http://upc.lbl.gov
• Titanium compiler: http://titanium.cs.berkeley.edu

