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Parallel Computing Past
• Not long ago, the viability of parallel computing was 

questioned:
• Several panels titled “Is parallel processing dead?”
• “On several recent occasions, I have been asked whether 

parallel computing will soon be relegated to the trash heap 
reserved for promising technologies that never quite make it.”

• Ken Kennedy, CRPC Directory, 1994

• But then again, there’s a history of tunnel vision
• “I think there is a world market for maybe five computers.”

• Thomas Watson, chairman of IBM, 1943.
• “There is no reason for any individual to have a computer in their 

home”
• Ken Olson, president and founder of Digital Equipment Corporation, 

1977.
• “640K [of memory] ought to be enough for anybody.”

• Bill Gates, chairman of Microsoft,1981.Slide source: Warfield et al.
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Moore’s Law is Alive and Well

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have 
become smaller, denser, 
and more powerful.

Gordon Moore (co-founder of 
Intel) predicted in 1965 that the 
transistor density of 
semiconductor chips would 
double roughly every 18 
months. 

Slide source: Jack Dongarra
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But Clock Scaling Bonanza Has Ended
• Processor designers are forced to go 

“multicore” due to
• Heat density: faster clock means hotter chips

• more cores with lower clock rates burn less power 
• Declining benefits of “hidden” Instruction Level Parallelism 

(ILP)
• Last generation of single core chips probably over-engineered
• Lots of logic/power to find ILP parallelism, but it wasn’t in the apps

• Yield problems
• Parallelism can also be used for redundancy
• IBM Cell processor has 8 small cores; a blade system with all 8 

sells for $20K, whereas a PS3 is about $600 and only uses 7
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Power Density Limits Serial Performance
Clock Scaling Extrapolation:
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Revolution is Happening Now
• Chip density is 

continuing 
increase ~2x every 
2 years
• Clock speed is not
• Number of 

processor cores 
may double 
instead

• There is little or no 
hidden parallelism 
(ILP) to be found

• Parallelism must 
be exposed to and 
managed by 
software

Source: Intel, Microsoft (Sutter) and 
Stanford (Olukotun, Hammond)
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Why Parallelism (2007)?
• These arguments are no longer theoretical
• All major processor vendors are producing multicore chips

• Every machine will soon be a parallel machine
• All programmers will be parallel programmers???

• New software model
• Want a new feature?  Hide the “cost” by speeding up the code first
• All programmers will be performance programmers???

• Some may eventually be hidden in libraries, compilers, and high 
level languages
• But a lot of work is needed to get there

• Big open questions:
• What will be the killer apps for multicore machines?
• How should the chips be designed: multicore, manycore, heterogenous?
• How will they be programmed?
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Memory Hierarchy
• With explicit parallelism, performance becomes a software problem
• Parallelism is not the only way to get performance; locality is at least 

as important
• And this problem is growing, as off-chip latencies are relatively flat 

(about 7% improvement per year) compared to processor 
performance
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Predictions
• Parallelism will explode

• Number of cores will double every 12-24 months
• Petaflop (million processor) machines will be common 

in HPC by 2015 (all top 500 machines will have this)
• Performance will become a software problem

• Parallelism and locality are key will be concerns for 
many programmers – not just an HPC problem

• A new programming model will emerge for 
multicore programming
• Can one programming model (not necessarily one 

language) cover games, laptops, and top500 space?
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PGAS Languages: 
What, Why, and How
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Parallel Programming Models
• Parallel software is still an unsolved problem !
• Most parallel programs are written using either:

• Message passing with a SPMD model 
• for scientific applications; scales easily

• Shared memory with threads in OpenMP, Threads, or Java
• non-scientific applications; easier to program

• Partitioned Global Address Space (PGAS) 
Languages 

• global address space like threads (programmability)
• SPMD parallelism like MPI (performance)
• local/global distinction, i.e., layout matters (performance)
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Partitioned Global Address Space Languages
• Explicitly-parallel programming model with SPMD 

parallelism
• Fixed at program start-up, typically 1 thread per processor

• Global address space model of memory
• Allows programmer to directly represent distributed data structures

• Address space is logically partitioned
• Local vs. remote memory (two-level hierarchy)

• Programmer control over performance critical decisions
• Data layout and communication 

• Performance transparency and tunability are goals
• Initial implementation can use fine-grained shared memory

• Base languages UPC (C), CAF (Fortran), Titanium (Java)
• New HPCS languages have similar data model, but 

dynamic multithreading
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Partitioned Global Address Space
• Global address space: any thread/process may directly 

read/write data allocated by another
• Partitioned: data is designated as local or global
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• Emphasis in this talk on UPC and Titanium (based on Java)

• 3 Emerging languages: X10, Fortress, and Chapel
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PGAS Language Overview

• Many common concepts, although specifics differ
• Consistent with base language, e.g., Titanium is strongly typed

• Both private and shared data
• int x[10];      and shared int y[10]; 

• Support for distributed data structures
• Distributed arrays; local and global pointers/references

• One-sided shared-memory communication 
• Simple assignment statements: x[i] = y[i]; or t = *p;
• Bulk operations: memcpy in UPC, array ops in Titanium and CAF

• Synchronization
• Global barriers, locks, memory fences

• Collective Communication, IO libraries, etc.
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Private vs. Shared Variables in UPC
• C variables and objects are allocated in the private memory space
• Shared variables are allocated only once, in thread 0’s space

shared int ours;
int mine;

• Shared arrays are spread across the threads
shared int x[2*THREADS] /* cyclic, 1 element each, wrapped */
shared int [2] y [2*THREADS] /* blocked, with block size 2 */

• Heap objects may be in either private or shared space

Shared
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PGAS Language for Multicore
• PGAS languages are a good fit to shared 

memory machines
• Global address space implemented as reads/writes
• Current UPC and Titanium implementation uses threads
• Working on System V shared memory for UPC

• “Competition” on shared memory is OpenMP
• PGAS has locality information that may be important when 

we get to >100 cores per chip
• Also may be exploited for processor with explicit local 

store rather than cache, e.g., Cell processor
• SPMD model in current PGAS languages is both an 

advantage (for performance) and constraining
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PGAS Languages on Clusters: 
One-Sided vs Two-Sided Communication

• A one-sided put/get message can be handled directly by a network 
interface with RDMA support
• Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a receive to 
identify memory address to put data
• Offloaded to Network Interface in networks like Quadrics
• Need to download match tables to interface (from host)

address

message id

data payload

data payload
one-sided put message

two-sided message

network
interface

memory

host
CPU

Joint work with Dan Bonachea
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One-Sided vs. Two-Sided: Practice
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GASNet: Portability and High-Performance
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GASNet at least as high (comparable) for large messages
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GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance
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Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:
• Chunk:

• Wait for 2nd dim FFTs to finish
• Minimize # messages

• Slab:
• Wait for chunk of rows destined 

for 1 proc to finish
• Overlap with computation

• Pencil:
• Send each row as it completes
• Maximize overlap and
• Match natural layout slab = all rows in a single plane with 

same destination
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NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap
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Making PGAS Real:
Applications and Portability
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AMR in Titanium
C++/Fortran/MPI AMR

• Chombo package from LBNL
• Bulk-synchronous comm:

• Pack boundary data between procs

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

• No explicit pack/unpack code
• Automated in runtime system

Code Size in Lines

4200*
6500

35000
C++/F/MPI

1500Elliptic PDE solver
1200AMR operations
2000AMR data Structures

Titanium

10X reduction in 
lines of code!

* Somewhat more functionality in PDE part of Chombo code

AMR Work by Tong Wen and Philip Colella
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Performance of Titanium AMR
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• Serial: Titanium is within a few % of C++/F; sometimes faster!
• Parallel: Titanium scaling is comparable with generic optimizations

- optimizations (SMP-aware) that are not in MPI code
- additional optimizations (namely overlap) not yet implemented

Comparable 
parallel 
performance

Joint work with Tong Wen, Jimmy Su, Phil Colella
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Particle/Mesh Method: Heart Simulation
• Elastic structures in an incompressible fluid.

• Blood flow, clotting, inner ear, embryo growth, …
• Complicated parallelization

• Particle/Mesh method, but  “Particles” connected 
into materials (1D or 2D structures)

• Communication patterns irregular between particles 
(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines

8000
Fortran

4000
Titanium

Note: Fortran code is not parallel
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Immersed Boundary Method Performance

Hand-Optimized 
(planes, 2004)
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Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen
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Dense and Sparse Matrix Factorization
Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

Completed part of U

C
om

pleted part of L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix
to be updated

Panel being factored

Joint work with Parry Husbands and Esmond Ng
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Matrix Factorization in UPC
• UPC factorization uses a highly multithreaded style

• Used to mask latency and to mask dependence delays
• Three levels of threads: 

• UPC threads (data layout, each runs an event scheduling loop)
• Multithreaded BLAS (boost efficiency)
• User level (non-preemptive) threads with explicit yield

• No dynamic load balancing, but lots of remote invocation
• Layout is fixed (blocked/cyclic) and tuned for block size

• Same framework being used for sparse Cholesky
• Hard problems

• Block size tuning (tedious) for both locality and granularity
• Task prioritization (ensure critical path performance) 
• Resource management can deadlock memory allocator if not careful

Joint work with Parry Husbands
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UPC HP Linpack Performance
X1 UPC vs. MPI/HPL
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•Comparable to MPI HPL (numbers from HPCC database)
•Faster than ScaLAPACK due to less synchronization
•Large scaling of UPC code on Itanium/Quadrics (Thunder) 

• 2.2 TFlops on 512p  and 4.4 TFlops on 1024p
Joint work with Parry Husbands
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PGAS Languages and Symbolic Computing
• Most of these applications are numeric
• Experience in parallel symbolic computing

• Grobner basis completion procedure [CAD 92, PPoPP 93, RTA 93]
• Compiling Verilog [IVC 95]
• The Perfect Phylogeny Problem [Supercomputing 95]
• Connected components 
• Mesh generation

• What do these applications require?
• Complex, irregular shared data structures

• Not just distributed arrays
• Ability to communicate/share data asynchronously 

• Not bulk-synchronous; not two-sided messaging 
• Fast low-overhead communication/sharing

• Shared memory is ideal, remote procedure invocation useful
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Portability of Titanium and UPC
• Titanium and the Berkeley UPC translator use a similar model

• Source-to-source translator (generate ISO C)
• Runtime layer implements global pointers, etc
• Common communication layer (GASNet)

• Both run on most PCs, SMPs, clusters & supercomputers
• Operating Systems:

• Linux, FreeBSD, Tru64, AIX, IRIX, HPUX, Solaris, Cygwin, MacOSX, Unicos, SuperUX
• Supported CPUs: 

• x86, Itanium, Alpha, Sparc, PowerPC, PA-RISC, Opteron
• GASNet communication:

• Myrinet, Quadrics, Infiniband, IBM LAPI, Cray X1, SGI Altix, SHMEM, MPI and UDP
• Specific platforms: 

• HP AlphaServer, Cray X1, IBM SP, NEC SX-6, Cluster X (Big Mac), SGI Altix 3000
• Underway: Cray XT3, BG/L (both run over MPI)

• Can be mixed with MPI, C/C++, Fortran
• Several other compilers for UPC: HP, Cray, MTU, Intrepid, IBM 

Also used by gcc/upc

Joint work with Titanium and UPC groups
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Conclusions
• Parallel computing is the future

• Time to think about parallelization strategies; think in long 
term towards machine trends

• Best time ever for a new parallel language
• PGAS Languages

• Good fit for shared and distributed memory
• Control over locality and (for better or worse) SPMD
• Support needs of symbolic and numeric communities
• Offer incremental parallelism

• Available for download
• Berkeley UPC compiler: http://upc.lbl.gov
• Titanium compiler: http://titanium.cs.berkeley.edu


